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•
 

Ion scattering -

 

MEIS, RBS
•

 
Electronic structure –

 

XPS, UPS, Inverse PES, Internal PES
•

 
Substrates:  Si, SiGe, Ge, GaAs, InGaAs

•
 

Etching chemistry and roughness
•

 
Film stoichiometry and thickness for multilayer structures

•
 

Microscopy -

 

TEM, SEM, AFM….
•

 
Electrical –

 

CV, IV
•

 
Film initiation and growth (esp. for ALD growth)

•
 

Influence of interface layers (diffusion barrier, growth initiator, work 
function engineering)

•
 

Metal gate/high-

 

dielectric film and interface stability
•

 
Diffusion/atomic mobility (O, Si, N, metal, etc…)

•
 

Epitaxial oxides and higher-K -

 

e.g. STO/Si, La compounds

CMOS gate stack activities
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Characterization Issues:
• SiGe-HK Interface
• Damage at p-n in SiGe
• Strain in channel

SiO2
Si

Nanowires III-V

Many options!

Characterization Issues:
• Sidewall S/D doping
• Sidewall silicidation
• Sidewall etch

Characterization Issues:
• strain, Eg

 

for III-V on Si
• III-V –

 

HK interface
• Doping 

Lysaght -
 

Sematech
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Alternative Channel Materials
•

 
Mobility improves by straining Si, but CMOS scaling would 
benefit from yet higher mobility….try other semiconductors.

•
 

A key challenge for alternative channel materials is passivation
 –

 
need low interface and bulk defect concentration.

•
 

Need high Ion

 

/Ioff

 

ratio, appropriate integration, high thermal 
stability, appropriate band alignment with no Ef

 

pinning, etc.
•

 
Ge and SiGe

 
studied for years for CMOS; now III-Vs

 
as well.
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Electronic structure across multilayer stacks

•

 

Band edge energies determined in many ways –

 

elec. and optical spec.
•

 

Can we use spectroscopies to (i) measure energies and LDOS more 
precisely, (ii) determine interface dipoles and band alignment, and (iii) use 
interface engineering to control effective work function…
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Band alignment, “effective”
 

work function, energy gap…
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•

 

Sensitivity:


 

10+12

 

atoms/cm2

 

(Hf, Zr)


 

10+14

 

atoms/cm2

 

(C, N)
•

 

Accuracy

 

for determining total amounts:


 

5% absolute (Hf, Zr, O), 

 

2% relative


 

10% absolute (C, N)
•

 

Depth resolution: (need density)


 

3 Å

 

near surface


 

8 Å

 

at depth of 40 Å
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Nitride dielectric layers and diffusion barriers

•
 

SiN has a higher permittivity than SiO2

 

.
•

 
Nitride layers help slow dopant diffusion and silicate formation

•
 

Nitridation also raises crystallization temperature of some oxides.
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Initial HfO2

 

film has small amount of 
interfacial SiO2

 

(~6-7Å) and excess of 
oxygen (~HfO2.07

 

)


 

Deposited Ti forms uniform layer, no 
strong intermixing with HfO2

 

; 


 

Oxygen concentration in Ti layer is small

After UHV anneal at 300oC for 15 min:


 

Lowering and broadening of Ti peak


 

Hf and Si peak shift and O peak changes
 Ti layer partially oxidized
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Thin oxides 15 to 30 Å

Silicon bulk contribution

Core level information

Film quality : MEIS, XPS

Synchrotron based 
photoemission

HAXPES 2009
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Single chamber 

UHV measurments

Si

SiO2

HfO2

Substrate band edges determination

Band offsets

Gap determination

5.7
15 Å

O2p

Hf5d

Photoemission and inverse photoemission of  HfO2

 

/SiO2

 

/Si
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Spectra shifted to set zero at 
the intrinsic Fermi level of silicon

Single chamber measurements

Gaps and band offsets 
comparable to literature

DOS, band gap and alignment results

HAXPES 2009
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OM

CNL

O S

CNL

S

Schottky limit

 No pinning

Bardeen limit

 Strong pinning

Robertson, Demkov, et al

Semi-empirical model

Band alignment models

S

 

= pinning parameter 

MO = S

 

( M –

 

O ) + ( O –

 

O ) 

MO

Alignment of the CNL modified by S
Reality is in between

OS = (O –

 

O

 

) –
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(O –

 

S

 

)
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S = 0S = 1
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M

 

= h- W

Egap

 

+

 

o

 

= h- W

MO =

 

S

 

(

 

M

 

–

 

O ) + ( O –

 

O

 

) 

O

CNL

OM

MO

Egap

Ru/HfO2

 

/Si: 
Metallization and Work Function

S=0.53 CNL=3.7
Robertson, JVSTB,18,1785, 2000

Energy values used in model can be 
extracted directly from experimental data

Theoretical prediction of the 
conduction band offset for the 

Ru/HfO2 interface
MO

 

=2.8 eV
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Work function –
 

real and linguistic issues
•

 
Work function (or vacuum work function) –

 
minimum energy to remove an electron from a 
solid to a distance >1nm.  
work function ≠

 
electrochemical potential

•
 

Many ways to measure work function: UPS, 
kelvin probe, thermionic emission….

•
 

“Effective work function”
 

in devices –
 

fictitious 
quantity, qualitatively assumed to be related to the 
real work function, that is used to explain band 
alignment between solids

reactiondipolesMIGSmechmvacmeffm ,,,arg,,,  UTA, 
Sematech,

 NCSU, etc.
   eotQQeotQV ff
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Ru/HfO2

 

/Si

0.5 eV

O

CNL

OM

S=0.53 CNL=3.7
Robertson, JVSTB,18,1785, 2000

MO =

 

S

 

(

 

M

 

–

 

O ) + ( O –

 

O

 

)

Theoretical shift: 0.4 eV
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Al/HfO2
 

/Si
Al thicknesses:1Å, 2Å, 4Å, 8Å EC-MO  =    EC-O        +   shift

=     2.2      -

 

0.7
=     1.5 eV measured

EC-MO

 

=   2.1 eV predicted

Why is the agreement so poor?

Oxidation of Aluminium 
Formation of a Al2

 

O3

 

layer

Si

SiO2

HfO2

Al
Al O2 3

Al 2p
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Hf4f and VB shift

Interfacial oxide 
reduction at 300 K

No significant
reduction 
of HfO2 in Hf4f

GeGeOx AlAl2O3

Hf

Ge

GeOx

Al

Al2O3

Ge

HfO2

HfO2

3 Å

 

Al
10 Å

 

Al

Clean surface

3 Å

 

Al
10 Å

 

Al

Clean surface
3 Å

 

Al
10 Å

 

Al

Al/HfO2

 

/GeOx

 

/Ge
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Ti3p

Hf4f

VB

Ti

TiOx

Partial Ti oxidation at 300 °C
No strong chemical shift of Hf4f

No reduction of HfO2

Si (100)

HfO2

SiO2

Ti

Ti/HfO2

 

/SiO2

 

/Si
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Ti/HfO2

 

/Si:   no shift of HfO2

 

features

Ti thicknesses: 1,3,5,9 Å

VB Hf 4f

EC-MO    =   EC-O        +   shift
=   2.2      +     0.0
=   2.2 eV measured

EC-MO

 

=   2.1 eV predicted
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Fundamental understanding of band 
alignment (conduction band)

Ru Al Ti

Oxide Expt MIGS Expt MIGS Expt MIGS

HfO2 2.4 2.5 1.5 1.9 1.8 1.9

Hf0.7

 

Si0.3

 

O2 2.4 2.4 1.5 1.8 1.7 1.8

SiO2 3.8 3.9 3.4 3.0 3.1 3.0

Al2

 

O3 3.0 2.7 2.0 2.0 2.4 2.0

Agreement between 
experimental CBO and 
MIGS-predicted CBO 
when no metal-induced 

interface oxide is present.

Band offsets of a ruthenium gate on ultrathin high-k oxide 
films on Si, Rangan et al., Phys. Rev. B 79 (2009) 075106 

Aluminum gate interaction with ultrathin high-k oxide films 
on Si, Rangan et al., submitted APL

Band offsets of a Ti gate with ultrathin high-k oxide films on 
Si, Rangan et al., manuscript in preparation
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HfOHfOxx
 

/Ge (ALD and MOCVD)/Ge (ALD and MOCVD)
 Film properties very growth dependentFilm properties very growth dependent
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Ge surface preparation: 
cleaning and passivation
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• Starting film -

 

GeO2

 

, GeO, GeC and CHx
• Oxidation/etch

•

 

GeO completely removed 
•

 

GeC greatly reduced
•

 

GeO2

 

formed as protective oxide ~10nm for 
H2

 

SO4

 

/H2

 

O2

 

-treated Ge
•

 

Sulfur passivation by (NH4
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S removes oxide 
and leaves S-Ge passivation layer
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HfO2

 

40A, hysteresis is ~0.15V.
Ge surface was first H2

 

SO4

 

/H2

 

O2

 

treated.
No HF used before sulfidation in (NH4

 

)2

 

S.

77A HfO2

 

, hysteresis is ~0.5V.
10% HF etching for 10mins before 

 sulfidation in (NH4

 

)2

 

S.
APL 89, 112905 (2006)

Cleaning HF HF/DIW/H2

 

O2 H2
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HF H2
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S-passivation No Yes Yes Yes
Qi

 

/e (cm-2) 4.00x1013 4.17x1012 3.56x1012 3.19x1012

QHS

 

/e (cm-2) 1.15x1013 2.09x1012 1.5x1012 9.72x1011

∆VFB_HS

 

(V) 0.31 0.29 0.22 0.15
Dit
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•

 

“Self-cleaning”

 

during ALD growth is a phrase that described the 
concomitant reduction and removal of surface oxides from a substrate during 
the ALD process. It has been observed by several groups

 

(P.D. Ye et. al.,APL, 
83, 180; M. Frank  et. al., APL, 86, 152904; C. Hinkle  et. al.,

 

APL, 92, 071901).

•

 

Some issues regarding “self-cleaning”:
1.

 

When does it occur? At the very first introduction of precursor or 
continuously through the growth?

2.

 

Where do the surface chemical species go? Desorb or incorporate into the 
dielectric or substrate?

3.

 

Can it help us prepare optimal gate stacks?
4.

 

No detailed structural data reported regarding “self-cleaning”.

Interface reduction during ALD or metallization

C.H. Chang et. al. 
(APL, 89, 242911)
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XPS

•

 

After preheating: Conversion of As2

 

O3

 

(46% 
decrease) to Ga2

 

O3

 

(47% increase) (relative to 
as-received wafer).

•

 

The native oxides in the preheated samples 
consist of a mixture of As2

 

O3

 

, As2

 

O5

 

and 
Ga2

 

O3

 

. The Ga:As ratio (~2:1) is close to the 
one from MEIS (2.3:1).

•

 

After 1 TMA pulse: Decrease of the As-O 
(~75%) and Ga-O (~16%) peak areas, 
consistent with MEIS.

•

 

After 4 TMA pulses: Further decrease of As-

 
O below the XPS detection level (to a lesser 
extent also Ga-O) -

 

confirms the MEIS result.  
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Normal linear Al oxide ALD growth 
after the 2nd

 

cycle

0 10 20 30 40 50
0

5

10

15

20

25

30

A
re

al
 d

en
si

ty
 [1

015
 a

t/c
m

2 ]

Cycle

 Al
 O

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Ar
ea

l d
en

si
ty

 [1
015

 a
t/c

m
2 ]

Cycle

 Al
 O

Areal Density (1015

 

at/cm2)
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Al            0                 0.8      1.5       2.5      4.3     18.6

O           4.6               4.6       4.8      6.5      9.4 29.0

•
 

After self cleaning (2nd

 cycle) the Al oxide growth 
rate becomes slower.
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S-

 

passivated n-GaAs

0.35-0.4 eV

3.9 eV

S-

 

passivated p-GaAs

2.5 eV
0.35-0.4 eV

~2.3-2.4 eV

~2.3-2.4 eV

HfO2

HfO2

S-

 

passivated n-GaAs

S-

 

passivated p-GaAs

1.4 eV

1.4 eV

1.9 eV

1.4 eV

1.4 eV

Ec

Ev

Ev

Ec

EF

EF

Ec

Ec

EF

EFEv

Ev

• On S-passivated films the Fermi level is partially pinned.
• After HfO2

 

growth, much less pinning.
• Conduction and valance band offsets agree with literature.

27HAXPES 2009



28

Band alignment of GaAs native oxide
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18 16 14 12 10 8 6 4 2 0 -2

 

 

 5 nm Al2O3 on p-GaAs(100) no anneal
 4 nm Al2O3 on n-GaAs(111) no anneal
 4 nm Al2O3 on n-GaAs(100) no anneal
 4 nm Al2O3 on n-GaAs(111) 600 C anneal
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Improvement of band alignment with post-deposition annealing

•Post deposition anneal (PDA) 
@ 600°C in forming gas for ~ 
15 sec yields improved energy 
level alignment for both n-

 GaAs and p-GaAs

•Valence band offset = 4.4 eV
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Estimating the interface state 
density from band alignment

•

 

Change in barrier height Δφ

 

vs change in work function ΔΦ
•

 

Work function difference between n-GaAs and p-GaAs ≈

 

1.4 eV
•

 

Pinning parameter S  = Δφ/ΔΦ

 

has been proposed to be related to the
interface state density at D(EF

 

) by:2-3

•

 

For no PDA 4nm Al2

 

O3

 

/GaAs, measured S = 0.3 eV/1.4 eV = 0.21
D(EF

 

)  = 5.2 x 1011

 

cm-2 eV-1

•

 

For PDA 600°C

 

4nm Al2

 

O3

 

/GaAs, measured S = 1.0/1.4 = 0.71
D(EF

 

)  = 5.6 x 1010

 

cm-2eV-1

•

 

Maximum S value given by empirical formula determined by the optical dielectric constant:4

•

 

For Al2

 

O3

 

, ε∞

 

= 3.1, S

 

= 0.69

2. C. Tejedor, E. Louis, F. Flores, J. Phys. C 10, 2163 (1977).
3. W. Mönch, “Semiconductor surfaces and interfaces”

 

3rd

 

edition, Springer, New York (2001) 
4. J. Robertson and J. Falabretti, Mat. Sci. Eng. B 136, 267 (2006)

[1 + (4πe2/εi

 

) D(EF

 

) δ/A]
1

S = 

S = 
1

1 + 0.1 (ε∞

 

- 1)2
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Post-silicon CMOS take home messages:
•

 
High-K dielectrics and metal gates are in product! 

•
 

Very good devices can and have been grown on Ge and III-Vs.  
•

 
Electrical properties a strong function of surface passivation.

•
 

Favorable band alignment found for some passivation and film 
growth conditions.  Fermi level pinning (of interface defects?) 
appears not critical if film grown properly.

•
 

Oxides of Ge and III-V’s less stable thermally and electrically 
relative to SiO2

 

; can be consumed during high-K growth.
•

 
Tendency of high-K to be partially reduced by Si substrate or 
gate not present for Ge and III-V’s.

•
 

Metallization materials and processes strongly affect interface 
chemistry and electrical properties.

•
 

Sulfur passivation of semicond. surface helps in some systems.
•

 
Si monolayers at interface appear helpful in minimizing defects.

HAXPES 2009
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Simulation of core level broadening from ΔV across dielectric

λ
d

0eII



λ=20Å,
ΔV=0.5 eV,
d=30Å
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interface



NW transistors and photovoltaics
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Interfaces in nanowire-enhanced photovoltaics: 
Rough approximation of band alignment

HAXPES 2009
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Haight, Sirinakis, Reuter
APL, 91, 233116 (2007) R. Haight, IBM
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Photoemission of nanowire devices

e
-

Electron detectorPhoton source

Single nanowire (diameter: tens to several hundred nm)

Patterned gap (several 
μm)

Focused X-ray light 
(sub μm spot size)

• Already demonstrated for low photon energies (R. Haight, IBM)

•

 

Current X-ray optics and nanowire (NW) fabrication technology allow for 
single NW photoemission

•

 

Allows for measurement of core-shell (gate stack analogs) structures in 
addition to intrinsic NW properties
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Additional spectroscopic tools

e-

EF
VB

CL

CB

XAS, EELS 
(Core CB)


…

Optical methods 

EF



E
g

Eg

Met Si

High-k

EF

E
g

Met Si

High-k

V

I-V 

EF

E
g

Met Si

High-k

V

probe

STM/C-AFM 

Also great new tools on market: new developments in TEM/STEM, 
atom probe tomography, He ion scattering, etc.
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Arc lamp

Monochromator

Chopper

Lock-in amplifier

I-V Source 
Measure Unit

Internal photoemission (IntPES) for barrier 
height determination of buried interface

Ec
EF

EV

barrier

metal semiconductor

EF

high-

• Find threshold of Y1/2

 

vs h
• Extrapolate hthreshold

 

to zero bias
• Determine barrier height

1 2 3 4 5 6

Y^
1/

2 
(A

U
)

Photon Energy (eV)

W/SiO2/Si 
Negative bias 
on Si

  -1V
  -1.5V
  -2V
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Interface chemistry of ALD growth

48 46 44 42 40 38

As 3d

Native n-GaAs

2 Cycles ALD n-GaAs

5 Cycles ALD n-GaAs

10 Cycles ALD n-GaAs

Binding Energy (eV)
23 22 21 20 19 18 17

Ga 3d

10 Cycles ALD n-GaAs

5 Cycles ALD n-GaAs

2 Cycles ALD n-GaAs

Native n-GaAs

Binding Energy (eV)

48 46 44 42 40 38

As 3d
10 cycles ALD p-GaAs

5 cycles ALD p-GaAs

2 cycles ALD p-GaAs

Native p-GaAs

Binding Energy (eV)
23 22 21 20 19 18 17

Ga 3d
10 Cycles ALD p-GaAs

5 Cycles ALD p-GaAs

2 Cycles ALD p-GaAs

Native p-GaAs

Binding Energy (eV)

* Spectra normalized and aligned to emphasize chemistry (band bending removed)

•Reduction of native oxides in 
first 2 cycles on both n-GaAs 
and p-GaAs

•Partial re-growth of As2

 

O3

 
and Ga2

 

O3

 

near interface 
during later cycles with 
regrowth more prevalent on 
n-GaAs than p-GaAs

•This behavior partially 
explains stronger pinning 
issues with ALD on n-GaAs

Al2

 

O3

 

on n-GaAs

Al2

 

O3

 

on p-GaAs

As2

 

O5

As2

 

O3

As + GaAs 

As2

 

O5

As2

 

O3

As+ GaAs

GaAs

GaAs

Ga2

 

O3

Ga2

 

O3
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