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Introduction
» HX-PES Combined with MCD (MCD-HXPES)

How to obtain magnetic information from PES spectra?

Spin-resolved PES ‘ Direct way, but efficiency is very low.

Non spin-flip mean free path of high kinetic energy electron is unknown.

PES combined with MCD ‘ Complementary experiment such as
spin-resolved PES

MCD is determined by photo-excitation probability.

We expect that MCD-HXPES is conventional technique to obtain electronic

structures and magnetic information of various materials without UHV ;:.;

condition, surface cleaning, and magnetization reversal in UHV., "3-
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Experiment
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Experimental configuration at BL15XU.
A helical undulator was used to

obtain circularly polarized X-rays.
hv=15.95keV, P, ~ 0.6.
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Experimental configuration at BL39XU.
A diamond phase retarder was used to
obtain circularly polarized X-rays.
hyv=7.94 keV, P, ~ 0.95.
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~ %or typical HXPES set-up, see e.g., Y. Takata et al., Nucl. Inst. Methods A 547 (2005) 50. .
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Fe; M, O, (M=Mn, Zn)
» We used a Fe;O, thin film as a sample for MCD-HXPES experiments.

Fe; ,M,O, (M =Mn, Zn) : T.> RT and carrier control by M substitution ratio.
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(a) Carrier concentration and mobility of Fe, M, O, (M = Mn, Zn) th|n films on
MgO(OOl) —




Highlight data Fe 2p MCD-HXPES of Fe,O, thin film
10 nm thick film

Fe,O, 205/ | « Helicity was changed by
Fe 2p 1 a diamond phase retarder.

hv=7.94 keV

| « without surface cleaning.

» Magnetized in the air.
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0: MCD ] P.~0.95
| asym ~12% Mg/Mg ~ 0.39

Intensity (arb. unit)
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&y We have succeeded in measuring MCD-HX-PES without surface cleanlng
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Fe 2p MCD-HXPES of Fe, :Mn, :O, thin film

100 nm thick film

g Measured at BL15XU
-hv = 5.95 keV

- Fe, sMny 50,
- Fe2p

Fe?" 1 Helical undulator was used.

P.~0.6

without surface cleaning.
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Magnetized in the air.
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Mn 2p MCD-HXPES of Fe, -Mn, O, thin film

Measured at BL15XU

Mg/Mg ~ 0.45

- ——difference (MCD) x 5

;"é-‘“ hv 595 keV Helical undulator was used.
20 FepsMngs0, 1 P.~06

J Mn 2p :

>F 3 without surface cleaning.
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Summary and future plan

» We have succeeded in measuring MCD-HXPES in the simple
practical way. (No UHV, no surface cleaning)

» MCD-HXPES can be an effective tool for measuring both electronic
and magnetic states.

For spin-resolved HXPES,

Forward scattering geometry can be one of the methods to conduct
the spin detection.

A planned spin-resolved HXPES does not require a spin detector.

What | would like to say is ....




A planned spin-resolved HXPES

e-
Mott scattering in the capping layer helps
to detect the spin polarization.

M Simple way!
/ e | |
sample Problem: effectl\(e Sherman function ?
non spin-flip mean free path?
Au thin film

or insulator (BGO)

Insulating layer acts as a widow for valence bands near E..
G. H. Fecher et al., APL 92 (2008) 193513.

(2~3 nm)

Combination with photoelectron diffraction will enhance the eff|C|ency ‘ﬁ
e o

W On Sherman functlon N. Sherman Phys. Rev. 103 (1956) 1601.
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END

Thank you for your attention!
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