Fourier-Optics Compatible Radiation Propagation Methods Used in SRW

O. Chubar, NSLS-II, BNL
Collaboration Meeting on “Simulation and Modeling for SR Sources and X-Ray Optics”
October 1 - 2, 2015, NSLS-II
Wavefront Propagation in the Case of Full Transverse Coherence

Kirchhoff Integral Theorem applied to Spontaneous Emission by One Electron

\[\mathbf{E}_{\omega 2\perp} (P_2) \approx \frac{k^2 e^{i\omega t}}{4\pi} \int_0^\infty \int_A \mathbf{B}_{\omega 1\perp} - \mathbf{n}_\perp \exp [i(k(c\tau + R + S)) \cdot (\ell \cdot \mathbf{n}_{p_1p_2} + \ell \cdot \mathbf{n}_{p_1p_2})] d\Sigma \]

Valid at large observation angles; Is applicable to complicated cases of diffraction inside vacuum chamber

Huygens-Fresnel Principle

Fourier Optics

Free Space: (between parallel planes perpendicular to optical axis)

\[\mathbf{E}_{\omega 2\perp}(x_2, y_2) \approx \frac{k}{2\pi iL} \int \mathbf{E}_{\omega 1\perp}(x_1, y_1) \exp [i(kL^2 + (x_2 - x_1)^2 + (y_2 - y_1)^2)] dx_1 dy_1 \]

Assumption of small angles

"Thin" Optical Element:

\[\mathbf{E}_{\omega 2\perp}(x, y) \approx \mathbf{T}(x, y, \omega) \mathbf{E}_{\omega 1\perp}(x, y) \]

"Thick" Optical Element: (propagation from transverse plane before the element to a transverse plane just after it)

\[\mathbf{E}_{\omega 2\perp}(x_2, y_2) \approx \mathbf{G}(x_2, y_2, \omega) \exp [ik \Lambda(x_2, y_2, k)] \mathbf{E}_{\omega 1\perp}(x_1(x_2, y_2), y_1(x_2, y_2)) \]

Implemented in SRW for Python in 2012; Currently used for simulation of NSLS-II PX and spectral microscopy beamlines

Benchmarking against experimental data is required
Approach to High-Accuracy Partially-Coherent Emission and Wavefront Propagation Simulations

Averaging (over phase-space volume occupied by e-beam) of the intensity (or mutual intensity, or mathematical brightness) obtained from electric field emitted by an electron and propagated through an optical system:

\[I_\omega (x, y) = \int I_{\omega1} (x, y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) f(x_e, y_e, z_e, x'_e, y'_e, \delta y_e) \, dx_e \, dy_e \, dz_e \, dx'_e \, dy'_e \, d\delta y_e \]

\[I_{\omega1} (x, y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) = |E_{\omega1} (x, y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e)|^2 \]

\[M_{\omega1} (x, y, \tilde{x}, \tilde{y}; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) = E_{\omega1} (x, y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) E_{\omega1}^* (\tilde{x}, \tilde{y}; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) \]

\[B_{\omega1} (x, y, \theta_x, \theta_y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) = E_{\omega1} (x, y; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) \int E_{\omega1} (\tilde{x}, \tilde{y}; x_e, y_e, z_e, x'_e, y'_e, \delta y_e) \exp \left[i \frac{\omega}{c} (\theta_x \tilde{x} + \theta_y \tilde{y}) \right] d\tilde{x} d\tilde{y} \]

This method is general and accurate. For the most part, it is already implemented in SRW code. However, it can be CPU-intensive, requiring parallel calculations on a multi-core server or a small cluster. Several approaches are considered for increasing the efficiency, including use of low-discrepancy sequences (collaboration with R. Lindberg, K.-J. Kim, X. Shi, ANL), “improved Monte-Carlo” type techniques, as well as “coherent mode decomposition”.

NOTE: the smaller the e-beam emittance (the higher the radiation coherence) – the faster is the convergence of simulations with this general method.

NOTE: convolution can be valid in some cases, such as pure projection geometry, focusing by a thin lens, diffraction at one slit, etc.

\[I_\omega (x, y) \approx \int \tilde{I}_{\omega1} (x - \tilde{x}_e, y - \tilde{y}_e) \tilde{f}(\tilde{x}_e, \tilde{y}_e) \, d\tilde{x}_e \, d\tilde{y}_e \]

If convolution is valid, the calculations can be accelerated dramatically. The validity of the convolution relation can be easily verified numerically.
Updates of Core SRW Functions
Made at NSLS-II (in collaboration with other Labs)

- Accurate partially-coherent emission and wavefront propagation simulations for SR sources are possible with SRW since ~2009:

- Parallel calculations of Partially-Coherent Emission and Wavefront Propagation are implemented in SRW for Python (based on MPI / mpi4py). Besides “normal” Intensity, calculation of Mutual Intensity / Degree of Coherence is possible:

- Increased reliability of Time- / Frequency-Dependent FEL Pulse Propagation simulations:

- New physical-optics “propagators” are implemented for:
 - Grazing-Incidence Focusing Mirrors, using the stationary phase method / “local ray-tracing”:
 - Perfect Crystals, using the X-ray Dynamical Diffraction methods:
 - Variable Line Spacing Gratings, using the stationary phase method:
R&D Direction: Improvement of efficiency and reliability of Partially-Coherent “Forward” Simulation

NSLS-II Hard X-Ray Nanoprobe (HXN) Beamline Optical Scheme and Wavefront Propagation Simulation

Flux after HCM: \(\sim 7.4 \times 10^{14}\) ph/s/.1%bw

Flux within N.O. Aperture (d=150 μm): \(\sim 3.6 \times 10^{12}\) ph/s/.1%bw

IVU20 HCM MONO HFM SSA

N.O.: ZP or MLL

Sample Plane

Horizontal Plane

Vertical Plane

Y. Chu, H. Yan, K. Kaznatcheev

Pan-Am SRI-2010

Intensity Distributions
Final Focal Spot Size and Flux at Sample vs Secondary Source Aperture Size (HXN, NSLS-II)

Horizontal Spot Size and Flux vs Horizontal Secondary Source Aperture Size

Vertical Spot Size and Flux vs Vertical Secondary Source Aperture Size

$\Delta y_{ss} = 30\, \mu m$

$\Delta x_{ss} = 20\, \mu m$

Secondary Source Aperture located at 94 m from Undulator
Spot Size and Flux calculated for Nanofocusing Optics simulated by Ideal Lens
with $F = 18.14$ mm, $D = 150\, \mu m$ located at 15 m from Secondary Source (109 m from Undulator)
Intensity Distributions at Sample for Different Secondary Source Aperture Sizes at HXN (NSLS-II)

In Horizontal Median Plane ($y = 0$)

For Different Horizontal SSA Sizes (Δx_{ss})

For Different Vertical SSA Sizes (Δy_{ss})

In Vertical Median Plane ($x = 0$)

For Nanofocusing Optics with $F = 18.14$ mm, $D = 150$ μm ($\Delta r \approx 15$ nm; $E_{ph} \approx 10$ keV)

SSA located at 94 m, Nanofocusing Optics at 109 m from Undulator
Partially-Coherent Wavefront Propagation Simulations for a Beamline with Grazing-Incidence Focusing Mirrors, Taking Into Account Their Imperfections (FMX @ NSLS-II)

Horizontal SSA Size: 30 μm
Photon Energy: 12.7 keV
Flux at Sample: \(~5.4 \times 10^{13} \text{ ph/s/1%bw}\)

Mirror Slope Error

Mirror Height Profile Error

KB simulated using Grazing-Incidence “Thick Optical Element” Propagator based on “Local Ray-Tracing”.
KB Surface Height Error simulated by corresponding Phase Shifts (“Masks”) in Transverse Plane at Mirror Locations.

Intensity Distributions at Sample

Without Mirror Errors

With Mirror Errors

hor. cuts \((y = 0)\)

vert. cuts \((x = 0)\)
Using CRL for Producing “Large Spot” at Sample of FMX Beamline @ NSLS-II

Source:
- Electron Current: 0.5 A
- Horizontal Emittance: 0.55 nm (“ultimate”)
- Vertical Emittance: 8 pm
- Undulator: IVU21-1.5 m centered at +1.25 m from Low-Beta Straight Section Center

CRL “Transfocator”:
- **8 Horizontally** + **3 Vertically-Focusing Be Lenses**
- \(R_{\text{min}} = 200 \, \mu m \)
- \(F_h \approx 5.9 \, m, \; F_v \approx 15.8 \, m \)
- Geom. Ap.: 1 mm x 1 mm
- Located at 0.75 m before VKB edge
 (10 m after SSA)
- Flux Losses at CRL: ~1.6 times

Horizontal SSA Size: 30 μm
Photon Energy: 12.7 keV

Intensity Distributions at Sample

Without Mirror Errors

With Mirror Errors

Electron Beam Distribution:
- Photon Energy: 12.7 keV
- Horizontally (y = 0)
- Vertically (x = 0)
Partially-Coherent Wavefront Propagation Simulations for CHX Beamline @ NSLS-II

Intensity Distributions for $E = 10$ keV
$\Delta S_{1x} = 44 \mu m$
$\Delta S_{1y} = 1 mm$

Before SS1 (@33.5 m)
Before CRL (@35.8 m)
Before KL (@44 m)
At Sample (@48.5 m)

Flux: 10^{13} ph/s/.1%bw
Introducing Intensity Distribution and Degree of Transverse Coherence at a Sample (CHX @ NSLS-II)

Intensity Distribution

- **In Horizontal Mid-Plane**
 - Vertical Position vs. Horizontal Position
- **In Vertical Mid-Plane**
 - Similarly structured, but with an orientation change.

Degree of Transverse Coherence

- **In Horizontal Mid-Plane**
- **In Vertical Mid-Plane**

Angular Intensity (far field) after Two Slits separated by 10 µm

- **In Horizontal Plane**
- **In Vertical Plane**

Mathematical Expressions:

\[\mu(r_1, r_2, \omega) = \left| \frac{W(r_1, r_2, \omega)}{[W(r_1, r_1, \omega)W(r_2, r_2, \omega)]^{1/2}} \right| \]

\[W(r_1, r_2, \omega) \sim \langle E(r_1, \omega)E^*(r_2, \omega) \rangle \]

Graphical Representations:

- Graphs illustrating intensity and coherence length comparisons:
 - Horizontal Coherence Length: \(~9.4\ \mu m\)
 - Vertical Coherence Length: \(~13.4\ \mu m\)

Observation

- Good agreement with 2-slit interference simulation results.

Conclusion

The study confirms the theoretical predictions with experimental data collected at the sample (CHX @ NSLS-II), providing a comprehensive analysis of intensity and coherence characteristics.
Partially-Coherent Wavefront Propagation Simulations for Inelastic X-ray Scattering Beamline with Advanced High-Resolution Crystal Optics (IXS @ NSLS-II)

Extended testing of new Physical Optics Propagator for Crystals

IXS Monochromators contain:
- DCM: 2 Crystals
- HRM: 4 Crystals of HRM

Mirror Surface Error is not taken into account

\[E_0 \approx 9131.7 \text{ eV} \]
Partially-Coherent Wavefront Propagation Simulations for a Soft X-ray Beamline with VLS grating (ESM @ NSLS-II)

Beamline Design:

Part.-Coherent Wavefront Propagation Simulations:

In these simulations, the horizontal secondary source slit size was set to be equal to the vertical size ($\Delta x = \Delta y$); mirrors' height / slope errors were not taken into account (to be included in next series of simulations).

Energy Resolution as functions of the Secondary Source (Monochromator Exit) Slits

Spatial Resolution

Flux (finite-bandwidth) at Sample

Two different VLS Gratings (160 mm long) were used:
$\alpha_0 = 800$ lines/mm for $E = 20$ eV; $\alpha_0 = 600$ lines/mm for $E = 60, 100$ eV
Approach to Coherence Preservation Diagnostics Assisted by Simulations (Illustration)

Optical scheme of test experiments with CRL and a Boron fiber probe

U33 (APS 32ID)

Mono
- $E_{ph} = 8.5$ keV

1D Be CRL
- 1 – 5 lenses
- $R_{\text{min}} = 500$ μm
- $D = 1$ mm

B-Fiber
- $D = 100$ μm

Detector
- YAG + CCD

- ~1.25 m from center of straight section
- ~36 m
- ~71 m
- ~75 m
Intensity Distributions in the B-fiber Based Interference Scheme for Different Numbers of CRL in Optical Path

Simulations allow to conclude about coherence preservation in presence of any beamline optics!

Measurement
- **1 lens**
- **2 lenses**
- **3 lenses**
- **5 lenses**

Calculation
- **1 lens**
- **2 lenses**
- **3 lenses**
- **5 lenses**

vertical cuts (at x = 0)
Intensity Distributions of Focused Wiggler Radiation from Partially-Coherent Wavefront Propagation Calculations

On-Axis Collection: $\theta_x = 0$, $\theta_y = 0$
$|\theta_x - \theta_x^0| < 0.1 \text{ mrad}$
$|\theta_y - \theta_y^0| < 0.1 \text{ mrad}$

Off-Axis Collection: $\theta_x = 0.5 \text{ mrad}$, $\theta_y = 0$

$\theta_x = 1 \text{ mrad}$, $\theta_y = 0$

1:1 Imaging Scheme with “Ideal Lens”

NSLS-II Low-Beta Straight Section
$I = 0.5 \text{ A}, \varepsilon_x = 0.9 \text{ nm}, \varepsilon_y = 8 \text{ pm}$

SCW40: $\lambda_u = 40 \text{ mm}, B_{\text{max}} = 3 \text{ T}, L = 1 \text{ m}$
Photon Energy: $E_{\text{ph}} = 10 \text{ keV}$
Intensity Distributions of Monochromatic Radiation from ESRF-U 2PW in 1:1 Imaging Plane

“Non-saturated” Image Plot:
From Downstream Dipole (out of focus)
(max. intensity 50 times lower than in the “non-saturated” plot)

“Saturated” Image Plot:
From 2PW (well focused)

Focusing by Ideal Lens located at: R = 30 m
Lens Aperture: Δx = 8 mm, Δy = 10 mm
Photon Energy: 5 keV

Cuts by Horizontal Median Plane
Cuts by Vertical Plane (x = 0)

at Different Horizontal Apertures
Estimating Degree of Coherence (/ Transverse Coherence Lengths) of Radiation from ESRF-U 2PW by Simulating Young’s 2-Slit Interference Schemes

Far-Field Interference Patterns from 2 Vertical Slits Separated by Horizontal Distance h

Fringe Visibility vs h in Horizontal Plane

Vertical Aperture: 1 mm; Slit Size: 2 µm
Horizontal Coherence Length: ~40 µm
For a BM-like Source should be ~60 µm

Far-Field Interference Patterns from 2 Horizontal Slits Separated by Vertical Distance h

Fringe Visibility vs h in Vertical Plane

Horizontal Aperture: 1 mm; Slit Size: 2 µm
Vertical Coherence Length: ~390 µm
For a BM-like Source should be ~390 µm

\[\text{Fringe Visibility} = \frac{1}{1 + \frac{\sigma_v^2}{2}} \]

\[E_{ph} = 5 \text{ keV} \]
\[R = 30 \text{ m} \]
Acknowledgments

- Pascal Elleaume, Jean-Louis Laclare

- Colleagues contributed to development of SRW: J. Sutter (DLS), D. Laundy (DLS), A. Suvorov (BNL), N. Canestrari (ESRF-BNL), R. Reininger (ANL), X. Shi (ANL), R. Lindberg (ANL), L. Samoylova (E-XFEL), A. Buzmakov (E-XFEL), D. Bruhwiler (RadiaSoft LLC), R. Nagler (RadiaSoft LLC)

- Management and colleagues who helped in transition to Open Source: G. Materlik (DLS, London Centre for Nanotechnology), K. Sawhney (DLS), J. Susini (ESRF), M. S. del Rio (ESRF), S. Dierker (BNL), Q. Shen (BNL), P. Zschack (BNL), S. Hulbert (BNL), H. Sinn (E-XFEL)

- Great supporters of SRW: A. Snigirev, I. Snigireva (ESRF), K.-J. Kim (ANL), M.-E. Couprie (SOLEIL)