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Complementarity; strengths and weaknesses
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Other probes of local structure also sensitive to atomic
positions, disorder, dynamics.

Information from other probes usually complements that
obtained by XAFS (and vice versa)

Neutron and x-ray diffraction (PDF analysis)

Nuclear resonance (Mossbauer Spectroscopy, NMR, NQR)
Electron Energy Loss Spectroscopy (EELS)

Non-resonant inelastic x-ray scattering (e.g. X-ray Raman)

The different length and time scales probed in XAFS compared to
other techniques can help you determine what is really going on.



Outline

The length scales (short vs long-range order)

The time scales (static vs dynamic)

Spatial resolution (can | resolve these distances?)
Atomic disorder

The “Z problem” (can | distinguish between atoms?)
Polarization dependence



The length scale
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The Length scale: Short versus long-ranged probes

* XAFS probes as far as the elastically-scattered
photoelectron can reach all the while the core-hole is

alive.
e-ZR/)\(k) Core-hole CE ) (/;\E, —>)

* Mean-free path (A) is determined by the core-hole lifetime (t) and
the inelastic losses. Both depend on p.e. wavenumber k.

The higher the k, the farthest the p.e. reaches within t. Losses are
strongly tied to available excitations (e.g. plasmons)

p = hk =my

X hk 2 i, Core-hole lifetime
V="X=—"T Inelastic scattering , x| dominates

T m dominates '

XAFS is an excited final state effect, so length and time scales are related !
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Length scales...

* Since XAFS is an interference effect between outgoing and
backscattered p.e. waves, it needs a coherent final state. Inelastic
scattering (losses) changes the p.e. wavenumber (energy)
destroying coherence

i.e., don’ t perturb the standing wave !

/
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Length scales...

Bragg diffraction probes a scale over which the scattering is
coherent; i.e., well defined correlations in atomic positions. In
good crystals this could be microns (i.e., much longer than
XAFS).

Long-range periodic order (many unit cells) yields Bragg peaks at
positions in reciprocal space corresponding to lattice planar
spacings (given by the space group), while other correlated atomic
displacements yield diffuse scattering (e.g. phonons, disorder).
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PDF from scattering data (neutrons, x-rays)
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|(Q) can yield radial distribution functions in amorphous, liquid,
crystalline samples. In non-monatomic samples [(Q) probes all A

correlated pairs (AA, BB, AB for two atom types) XAFS measures ’,
partial RDF’ s involving the absorbing atom.
- Resonant PDF can enhance selected pair correlations B
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Length scales: Some other techniques.

Other probes of short range order:

* Nuclear techniques: Mossbauer spectroscopy, NMR, NQR

* Electron techniques: Electron energy loss spectroscopy (EELS)
* X-ray techniques: Inelastic x-ray scattering (X-ray Raman)

Mossbauer, NMR, NQR T
Nuclear energy levels and nuclear spin
relaxation depends on local structure
(neighbors, symmetry, disorder).
Limited to selected isotopes

intensity (a.u.)

EELS (X-ray Raman)

energy loss of inelastically scattered
electrons (photons).

EELS: Limited to thin films (1000 A).
X-ray Raman: Access to soft energy edges (e.q. for high pressure expts)
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Summary: length scales

XAFS (also EELS, X-ray Raman, Nuclear techniques) probes
short-range order only (~ 10 A=1 nm)

Scattering can probe both long-range (~ 1 um), periodic
ordering (Bragg scat, Q=G) and short-range ordering through
PDF analysis (diffuse scat. Q=G).

The big advantage of XAFS is in its element specificity (PPDF):
e.g., diluted concentrations. Also allows direct measurement of
3-body correlations through multiple scattering. The big
advantage of PDF-scattering is that it can also probe
intermediate orﬁder (10-30A), if it exists.
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Example: Local structure vs average structure

La, .85Sr0.1scu1—yNiy04
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Diffraction: Ni doping contracts
c-axis, expands a-axis, uniformly

Vegard’s law

Cu?*: Jahn Teller
Ni2*: non JT
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Ni XAFS

Cu XAFS
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Local strain field around a large ion.
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Strain field around Ba due to
larger ionic size than La.

Non-periodic distortion easily seen/quantified with XAFS
Diffraction would show disorder, lattice expansion

Pioneering
Science and
Technology

A

Office of Science
U.S. Department
of Energy



Time scales
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Time scale: XAFS

» XAFS time scale given by the core-hole lifetime, 10-'° sec,
much faster than any atomic motion (phonons meV —10-13 sec).

* Each absorption event probes the instantaneous atomic positions.
Since a measurement integrates over many snapshots and over many
absorbers, it probes the distribution of atoms through spatial (static)
and time (dynamic) averaging.

. t1 E =hw(n+%)
@
% e.. .
@ o o O T
Static Dynamic

XAFS can’ t distinguish between static and dynamic displacements.
(However T dependence can be used to separate static from thermal disorder)

Pioneerin g Office of Science
® Science an d U.S. Department
Technology of Energy



Time scale: Scattering/Diffraction
Q=kek

The x-ray and neutron scattering ki,Ei\[ e, Ey
cross section is related to S(Q, w): /

S(Q ) 1 jdt —iwt2< —ié'f(()) ié'?(l‘)> (D=Ef-EI
) = — e e e~
27 ¥

Jid

T

Scattering with no energy discrimination (“quasi-elastic”)
integrates over w,

f dw e ™ =27 §()

... and results in S(Q) at t=0; /.e, the instantaneous correlation function.

e Energy discrimination (inelastic scattering) can be used to probe
dynamics

A



Time scales
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XAFS and diffraction measure the instantaneous distribution of
atoms, averaged over their respective length scales.

Inelastic scattering can be used to study dynamics.

Nuclear techniques such as Mossbauer spectroscopy and NMR
have much slower time scales (10-°-10-° sec) due to much

longer lifetime/relaxation times of excited nuclear states.



Example: time scales

La

O om)
O Cu
. La/Sr
@ o Bragg diffraction:
LTT— LTO— HTT
60K 200K

Change in tilt direction results in significant redistribution of La-O(2)
distances; easily probed by XAFS
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Expected changes at LTT— LTO phase transition
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Orientational dynamical disorder
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Slower probes (e.g. La NMR) or long-range probes
will average over dynamic displacements, while
XAFS only sees local tilt
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Spatial resolution
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Spatial resolution

The ability to resolve two distances “close” to each other.

o R aE
L 3 or o1 (R)=(R+R))
€ @ &= @ O0=AR/2
R, BN 2 |
AR
Intuition: To resolve needs AR to be a significant fraction of smallest p.e.
wavelength:
AR = A _ 27 T
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Spatial Resolution
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Spatial Resolution
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Spatial resolution

K, 2R

In XAFS phase shift between outgoing and backscattered
waves is given by 2R (optical path length).
In diffraction, phase shift between scattered waves given by

some projection of R. Q=47nsin6
JT T

kmaxz Qmax2 B . _2_J'C.d = a_2 b_2 ﬁ

2AR AR ragg-Qhkz—dhkl’ i = h2+k2+ 12

k__ ~20A-", AR~0.08A a~3A, (10,0,0), Q~20A-", AR~0.16 A
max ) .
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Spatial resolution

e.g. unresolved distance splitting at low T o
due to structural phase transition

In order to resolve a distance splitting of AR needs to measure
XAFS to at least k,..=(7/2AR), and diffraction up to Q__,=(7/AR).

Other techniques, especially those sensitive to symmetry breaking
(Raman, Bragg diffraction), could be more sensitive than XAFS to
detect small distance splittings. Even if distances cannot be
resolved by XAFS, small changes might be evidenced in
anomalous T Dependence of DWF’ s.

v



Atomic Disorder (DWF’ s)
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Debye-Waller factors

uf =((R-R)* )i = (R, - R,))
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Atomic Disorder

XAFS yields disorder in interatomic distances while

Diffraction (as well as Mossbauer spectroscopy) yields disorder
about lattice site.

Care must be exercised when comparing DWF’ s amongst
techniques. Such comparison, however, might be useful in
determining correlations in atomic displacements.

lu, =l u, |
o’=u +u;, if C=0 '\@{: Jo
o°=0, if C=1 e

Cag
o’ =4u’, if C=-1 «® s
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The “Z” problem
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The Z problem and getting around it

* Scattering amplitude depends on Z; XAFS can’t distinguish
neighbors only a few Z apart

* Non-resonant x-ray diffraction same problem (f, ~ Z)
* Resonant x-ray diffraction/PDF : f; + f +if”

- ] ] . 2b‘
* Neutron diffraction scattering length: »=5-ib"=5, +Tll)s-1
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Polarization dependence
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Polarization dependence

You may be able to exploit the polarization dependence of
XAFS to solve complex structures with overlapping distances

Or to probe for orientational order in your sample

Electric dipole

M(E) z| <f | er € | l> |2 linear polarization Al ==1,Am =0

Scattering probes:

K-edge: s=>p L, ; edges: p=>d, p2>s | Qplaysrole of £

mer-[0s"(CO)(bpy)Cls]

x (k) < 3cos’ ©, f (1) x (k) o (112%0 1) £(7x)(1 - 3cos ®j)+%f(ﬂ)(l+3cosz G)J)+Wf(n)




Polarization dependence

* Dipole selection rules (and polarization dependence) a
consequence of orthonormality of Spherical harmonics

~ ANk Y,"(6,¢) =~ P" (cos§)e™
M(E)~|<flere\|l>| .
1 ) > (x) =
: Yy [R@R@dx =5, | A==
K-edge: | ), - COS@zz +1 po % .

iylsy O (1=0.R
g { r-€ =cos® (B) x|
r

| f)=|p)=cos®@ OO ([ =1, P) o -

Electric dipole Al 4+ 1 €
Linear polarization - -
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Polarization dependence

* When using circularly polarized x-rays, dipole selection rules
(preservation of angular momentum) require that excited
photoelectrons carry projection of angular momentum
originally carried by the photon-> XMCD and MXAFS

u(E)=I{fler-(Ex+iEy)li) B Y (6,¢) = P"(cos@)e™
Al ==1,Am = =1

MEXAFS
Gd L

I L I L
7400 750 7600

s °
Re[x(R)I(A™)
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