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454, 2010 

M. Cargnello, et al., Science 341, 771, 2013 
W. Williams, et al., JACS, 132, 14018, 2010 

J. Kleis, et al,  
Cat. Letters 141, 1067 (2011) 

S. Mostafa et al, JACS 132, 15714 (2010)  

B. Hammer and J. Nørskov 
Nature Chem. 1, 37, 2009 

J. Nørskov, et al, Nature Chem. 1, 37, 2009 



To explain catalytic 
mechanisms: 

Capturing effects at different length, times, energy scales 
     - Need multiple complementary probes 
 
Resolving between multiple descriptors of activity (e.g., size, structure, shape) 
     - Need multiple complementary probes 
 
Determining active sites 
     - Need operando characterization 



“in-situ“ (“in place”): a method of data collection without exposing the sample to external 
environment e.g., removing a catalyst from the reaction mixture 

In situ vs operando  

The fact that, strictly speaking, the active state of a catalyst only 
exists during the catalysis further emphasizes the need for 
performing operando studies under relevant reaction conditions. 

Henrik Topsøe, J. Catal. 216, 155 (2003) 

"Operando methodology: Combination of in situ 
spectroscopy and simultaneous activity measurements 
under catalytic reaction conditions".    
 M. Bañares, Catalysis Today 100, 71 (2005)  

C. M. A. Parlett, et al. 
Catalysis Today, 205, 76 (2013) 

In situ: I suppose it’s working…  

… and I can determine  
reaction mechanism 

? 

Operando: I know it’s working…  

(M. Bañares) 

… and I can determine  
reaction mechanism 



A. Patlolla, E. V. Carino, S. Ehrlich,  
E. Stavitski, A. I. Frenkel  

(invited) ACS Catalysis 2, 2216-2223 (2012)  

EXAMPLE 1: Operando studies of active sites in Water-Gas-Shift 
catalysts by combined XAFS, XRD and Raman measurements 

Beamline: X18A 



S. Mostafa, F. Behafarid, J. R. Croy, L. K. Ono, L. Li, J. 
C. Yang, A. I. Frenkel, B. Roldan Cuenya, J. Am. Chem. 
Soc., 132, 15714 (2010)  

Example 2: Shape dependent 
nanocatalysis 

Reaction temperature correlates with the 
number of under-coordinated sites 
(number of missing bonds on NP surface) 

 
 
 
 
Other factors? Size? Morphology of the 

particle-support interface? Disorder? 
Strain?  

How to deconvolute them? 



How to resolve complex interactions in heterogeneous systems at multiple 
length scales in working conditions (operando)? 

IR Microscope TEM Raman 

S. Billinge, 
I. Levin, 
Science 
2007, 316, 
561.  

Microreactor 

XAS 

XAS/SAXS/WAXS/UV-Vis/Raman  
A. Iglesiaz-Juez  et al,  SRN, 2009, 
v.22 

Gaps: 
 Pressure 
 Materials 
 Instrument 
 Complexity 



Ethylene hydrogenation over Pt/SiO2 
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Y. Li, et al, Nature. Comm., 6, 7583 (2015) 



STEM-derived quantities: number of  
atoms and bonds in measured 
distribution 

EXAFS-derived 
quantity 

Undetectable parts in STEM: 
the number of atoms and bonds 
 “that are left behind the curtain” 

The outcome: 
 
Counting clusters of all sizes, including those  
“behind the resolution curtain” 
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Y. Li, et al, Nature. Comm., 6, 7583 (2015) 



The Summary: Reaction-driven restructuring of Pt nanoparticles  
during catalytic hydrogenation of ethylene 
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A peek “behind the curtain” 

Complementary probes in nm-range 

𝜈𝜈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜈𝜈𝑜𝑜𝑜𝑜 + 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠−𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜈𝜈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜈𝜈𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 



 

Y. Li, et al, Nature. Comm., 6, 7583 (2015) 

S. Zhao, et al, Chem. Cat. Chem., 7, 3683 (2015) 

Coexistence of unreduced species, single atoms, 
ultra-small and large clusters in reaction conditions 10-9
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EXAMPLE 3: Monitoring multiple 
components of a heterogeneous 

system by correlative use of 
operando XAS, TEM, IR and Raman 

Product formation is monitored at multiple 
facilities (NSLS-II, CFN and research labs) and 
correlated to each other – to correlate 
experimental data 



Application of in situ/operando methods to  
Filtration Materials 

Challenges:  
   -Identifying active sites in POMs and MOFs for the agent 
uptake; 
   -Structure, electronic & catalytic properties of MOFs and 
POMs in reaction conditions;  
   -Correlative studies by multiple techniques; 
   -Combination of characterization studies with theory 

Questions:  
   - How do MOFs and POMs change structure under operational 
conditions? 
   - What are the molecular-level reaction mechanisms for agents? 
   - Where do agents bind during initial uptake? 

Methods:  
   - Local geometry of active sites in POMs and MOFs: XAFS/XANES/Raman 
   - Electronic charges of metal species in POMs and MOFs: XANES 
   - Long range order in MOFs: XRD 
   - In situ bond forming and breaking during agent uptake and decomposition: 
XAFS/XRD/Raman 
   - Correlation between multiple techniques using reactivity measurements and 
theoretical modeling 
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UiO-66 

Filtration activity of MOFs 

Dimethyl methylphosphonate 
(DMMP) 
 

Electron density 
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