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Introduction to the Chen Group

• Expertise in surface science and supported catalysis for energy 
applications
– Specialize in developing trends to correlate structure and 

electronic properties to catalytic properties
• Correlating d-band center, hydrogen binding energy, and 

coordination number to activity and selectivity
– Bridging the “pressure gap” and “materials gap”
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Analytical Techniques: 
DFT, TPD, HREELS, FTIR, 
CO Chemisorption, TEM, GC, XAFS
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Correlating Model Surfaces to Supported 
Catalysts

[1] W. Yu, M.D. Porosoff, J.G. Chen, Chem. Rev. (2012).



Lesson Outline

1) Hydrogenation of propanal: a successful correlation with PtNi

2) Activation of CO2: a system that is not yet fully characterized or 
understood 
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Common Theme: Discovering trends to identify desirable catalysts
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Common Theme: Discovering trends to identify desirable catalysts



Propanal as a Probe Molecule

• Hydrogenation of C=O bonds is important for organic synthesis
– Also an important step during biomass conversion (Cellulose 
→ Polyols)

• Propanal is a very simple hydrocarbon with only one C=O bond
– Bimetallic surfaces have previously been shown to be active 

for hydrogenation
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[1] N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang, J.G. Chen, Angw. Chem. Int. Edit. 47 (2008) 8510-8513.



Subsurface

Pt-3d-Pt(111)

Surface

3d-Pt-Pt(111)

Intermixed

Pt-3d-Pt(111)

Structure of Bimetallic Surfaces

• Pt–3d bimetallic surfaces are capable of forming three configurations

• Pt-3d-Pt lowers H2 binding energy and dissociates hydrogen more 
easily than Pt(111)
– Enhanced hydrogenation activity over either of its parent metals

7
[1] M.D. Porosoff, W. Yu, J.G. Chen, J. Catal. (2013).
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DFT Identification of Active Surfaces 

• Surfaces that bind H2 and propanal more weakly should be more active for 
hydrogenation
– Pt-Ni-Pt  subsurface binds propanal and H2 more weakly than both Pt and Ni

Hydrogen Binding Energy Propanal Binding Energyb)a)

[1] M.D. Porosoff, W. Yu, J.G. Chen, J. Catal. (2013).
[2] R.Y. Zheng, M.P. Humbert, Y.X. Zhu, J.G. Chen, Catal. Sci. Technol. 1 (2011) 638-643.
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Temperature Programmed Desorption (TPD)

• TPD studies in UHV conditions indicate Pt-Ni-Pt is more active than Pt and Ni
• Using d-band center as a predictor could save significant time to identify supported 

catalysts for reactor experiments

TPD of Propanala) 1-Propanol Yield vs d-band Centerb)

[1] R.Y. Zheng, M.P. Humbert, Y.X. Zhu, J.G. Chen, Catal. Sci. Technol. 1 (2011) 638-643.



Ex-situ Characterization of PtNi/γ-Al2O3

• Catalysts are synthesized using incipient wetness impregnation
• TEM measurements indicate there are well-distributed, metallic 

particles, ~1.5 nm
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Pt/γ-Al2O3 PtNi/γ-Al2O3

Can you tell which is bimetallic? No, we need to use XAFS

[1] W.W. Lonergan, D.G. Vlachos, J.G. Chen, J. Catal. 271 (2010) 239-250.



Why are we interested in XAFS?
• DFT and UHV studies indicate that the Pt-Ni-Pt surface is very active for 

propanal hydrogenation
– Necessary to replicate an analogous surface in supported catalysts
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Pt-Ni-Pt(111)

Pt Ni

Supported Catalyst Pt-Ni Nanoparticle

Do we have bimetallic particles?

Can we compare these systems?



X-ray Absorption Fine Structure (XAFS)
• Used to measure bond distances, coordination number, and nearest 

neighbors of metal atoms to confirm existence of bimetallics

• XANES: Near edge region of absorbance 
spectrum, contains electronic information
– Oxidation states

• EXAFS: Extended edge region of 
absorbance spectrum, contains structure 
information 
– Bond distances, nearest neighbors 

and coordination numbers
12

Nashner-Adler cell 
for in-situ reduction

Image courtesy of SCC website

µ = ln(Io/It) 



Pt-Based XAFS Data
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XANES: Electronic Properties

• Samples were 
reduced in-situ in 
5% H2 and appear 
similar to Pt foil 
after reduction

• All data sets consist 
of 5 scans that are 
pre-processed, 
aligned and merged 
in Athena

• Decrease in M-O 
bonds and increase 
in M-M bonds upon 
reduction

[1] W.W. Lonergan, D.G. Vlachos, J.G. Chen, J. Catal. 271 (2010) 239-250.

EXAFS: Structure Properties



First Shell Fitting of EXAFS Data in Artemis
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• Data was fit after reduction in 5% H2/He with 7 parameters

Pt FEFF Path Ni FEFF Path

Guess, Def, Set

Data is PtNi/SiO2 for illustration purposes

R-Space Data with Fit



Catalysts N(Pt-Pt) N(Pt-Ni) d(Pt-Pt) d(Pt-Ni) σ2 (Pt-Pt) σ2 (Pt-Ni)

Pt/γ-Al2O3 6.2  0.4 -- 2.75 ± 0.01 -- 0.006 ± 0.001 --

1Pt-3Ni/γ-Al2O3 4.4  0.7 2.6 ± 0.6 2.72 ± 0.01 2.57 ± 0.01 0.007 ± 0.001 0.010 ± 0.002

3Ni-1Pt/γ-Al2O3 7.3  0.9 1.4 ± 0.5 2.74 ± 0.01 2.58 ± 0.01 0.007 ± 0.001 0.008 ± 0.002

1Pt-3Ni/γ-Al2O3
co-imp 5.7  0.9 3.2 ± 0.5 2.72 ± 0.01 2.58 ± 0.01 0.007 ± 0.001 0.010 ± 0.001
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• In all cases, Pt-Pt distances are smaller than bulk Pt-Pt (2.77 Å), while Pt-Ni 
distances are larger than bulk Ni-Ni (2.49 Å), suggesting bimetallic bonds 

• Small goodness of fit  parameter (σ2 < 0.01) indicates excellent fit
• Bimetallic coordination number is largest on the co-impregnated catalyst
• Can we infer the structure of the bimetallic particles?

EXAFS Fitting Results

3.2 ± 0.5

[1] W.W. Lonergan, D.G. Vlachos, J.G. Chen, J. Catal. 271 (2010) 239-250.



Batch Reactor with In-situ 
Fourier Transform Infrared Spectrometer

Bellows

Exterior View Interior View
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Reaction Vessel

Gas Line

Tungsten Mesh



Bimetallic Catalyst Structure by 
CO Adsorption with FTIR

• Figure shows CO binding 
signatures in FTIR on Pt/Ni 
catalysts on γ-Al2O3

• 2061 cm-1 for atop sites
• 1945 cm-1 for bridge on Ni
• 1841 cm-1 for bridge on Pt

• Bimetallic Pt-Ni are similar to 
monometallic Pt, suggesting 
bimetallic supported catalysts 
are Pt-terminated

17
[1] M.D. Porosoff, W. Yu, J.G. Chen, J. Catal. (2013).
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Batch Reactor Activity for Hydrogenation

• PtNi/γ-Al2O3 is more active for propanal hydrogenation than either of its parent 
metals

• Recall: Pt-Ni-Pt subsurface was most active in UHV experiments

Propanal Activity, T = 343 Ka)

Supported Catalysts

[1] W.W. Lonergan, D.G. Vlachos, J.G. Chen, J. Catal. 271 (2010) 239-250.
[2] R.Y. Zheng, M.P. Humbert, Y.X. Zhu, J.G. Chen, Catal. Sci. Technol. 1 (2011) 638-643.

Propanal Activity, TPDb)

UHV Surfaces

Catalysts k (10-3 min-1 g-1) Ea (kJ mol-1)
Pt/γ-Al2O3 28 53.0

3Ni/γ-Al2O3 18 45.7
3Ni-1Pt /γ-Al2O3 137 24.4



Summary of Hydrogenation of Propanal

• DFT and UHV studies indicated that Pt-Ni-Pt surface would be 
active for propanal hydrogenation

• Bimetallic structure of supported catalysts confirmed with TEM, 
EXAFS and CO FTIR

• Extent of bimetallic formation is critical for high activity during 
hydrogenation reactions

• EXAFS can be used to confirm the active phase of the bimetallic 
particles
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Lesson Outline

1) Hydrogenation of propanal: a successful correlation with PtNi

2) Activation of CO2: a system that is not yet fully characterized or 
understood 
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Common Theme: Discovering trends to identify desirable catalysts



Introduction to CO2 Activation

• Significant cuts in emissions are required to stabilize CO2 levels
• Sequestration is costly (~$50-100/ton CO2) with unknown effects

– Convert CO2 into a useful chemical

[1] http://www.netl.doe.gov/publications/factsheets/program/Prog065.pdf
[2] C.S. Chen, W.H. Cheng, S.S. Lin, Appl. Catal. A-Gen. 257 (2004) 97-106.
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CO2 CO

H2 H2O

CH3OH for
chemicals

+2H2

• CO from CO2 has a potential for a 40% reduction in CO2 emissions 
by utilizing CO in Fischer-Tropsch

• CO2 is highly stable and unreactive  activate with a catalyst
[3] L. Fan, K. Fujimoto, J. Catal. 150 (1994) 217-220

Fischer-Tropsch
for fuels

CH4

+2H2 Abundant and
low volumetric 
energy density

Only yields a 0.1% 
reduction in CO2
emissions



Supported Catalyst Selection for 
CO2 Activation

• CO2 activation requires a dual-functional catalyst with high 
hydrogenation and C=O bond breaking activity
1. Hydrogenation of CO2 (metal)  formate intermediate
2. Scission of C=O bond (support)  aldehyde intermediate

• Active metal and oxide support both must play a role

22
C.S. Chen, W.H. Cheng, S.S. Lin, Catal. Lett. 68 (2000) 45-48.

1)1) 2)
C=O
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O O
C Metal Function

O O
C
H

2) Support Function



Supported Catalyst Identification

• Supported catalyst: Active Metal + Support
• Active Metal: Nano-sized metallic particles provide 

adsorption sites and aid dissociation of reactants
– PtNi was active for C=O hydrogenation in 

acetone and propanal
• Support: Metal oxides provide stability and increase 

active metal dispersion
– Irreducible: γ-Al2O3, Reducible: CeO2

– Lattice oxygen vacancies in CeO2 can accept 
oxygen from CO2 to contribute to its activation

– CeO2 cannot activate CO2 alone
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Co Ni Cu

Rh Pd Ag

Ir Pt Au

CeO2: Ce4+

Ce2O3: Ce3+

R
eductionO

xi
da

tio
n

[3] T. Jin, et al, ACS. 87 (1987) 5931-5937.
[1] S.T. Qi, et al, Appl. Catal. A-Gen. 393 (2011) 44-49.
[2] R.Y. Zheng et al, Catal. Sci. Technol. 1 (2011) 638-643.
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Determining Trends in Activity and Selectivity

CeO2

γ-Al2O3

• The support dominates the activity and metals control selectivity
– Support effect: The activity is higher on each CeO2 based catalyst
– Metallic effect: Decreasing CO:CH4 with increasing values of d-band center

• Investigate other catalysts that exhibit dual-functionality and oxidation-reduction 
cycles

Activity at 573 K in Batch Reactor Selectivity at 573 K in Batch Reactor

M.D. Porosoff, J.G. Chen, J. Catal. 301 (2013) 30-37.

b)a)
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Mo2C as a Catalyst for CO2 Activation

[1] C. Shi, A.J. Zhang, X.S. Li, S.H. Zhang, A.M. Zhu, Y.F. Ma, C.T. Au, Appl. Catal. A-Gen. 431 (2012) 164-170.
[2] J.L. Dubois, K. Sayama, H. Arakawa, Chem. Lett. (1992) 5-8.
[3]  J. Sehested, C.J.H. Jacobsen, S. Rokni, J.R. Rostrup-Nielsen, J. Catal. 201 (2001) 206-212.

O-Modified 
Mo2C

Mo2C

R
ed

uc
tio

n O
xidation

• Metal carbides show catalytic properties similar to precious metals 
in many reactions: reforming, hydrogenation, isomerization
– Mo2C is a dual functional catalyst with high hydrogenation and 

C=O bond breaking activity
• High Mo2C activity and selectivity for CO2 activation could be from 

an oxidation-recarburization cycle
– Mirrors the oxygen storage capacity seen in ceria
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Mo2C Synthesis

1. Impregnate ammonium molybdate tetrahydrate into silica support 
(S.A ~ 1000 m2/g, 2.1 – 2.7 nm pore size) 

2. Calcine, then carburize catalyst
3. Wash away silica with NaOH, then filter and fully dry Mo2C

MoO3 + Silica

Carburize in 
CH4/H2

Mo2C + Silica Mo2C

Wash and Filter
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Characterization of Mo2C

∆ : Peaks associated with β-Mo2C

• Mo2C is a new compound for the group and the synthesis is a new 
procedure → must verify the compound is pure Mo2C
– XRD indicates β-Mo2C (more stable phase)

• Compare with a reference Mo2C using EXAFS



Calculations Prior to EXAFS of Mo2C
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• Mo2C is a pure compound: sufficient 
X-ray transmittance is a challenge
– PtNi/γ-Al2O3 is 1.67 wt% Pt and 

1.5 wt% Ni on a relatively X-ray 
transparent support

– Sample must be diluted: mass 
attenuation data on NIST can be 
very helpful

• Dilution must be great enough to allow transmission, but small 
enough to see an edge jump
– µ = ln(Io/It) → 0.1 < µ < 1.2
– Sample diluted ~1:20 with boron nitride



Ex-situ EXAFS of Mo2C

29

• Comparison with Alfa-Aesar standard shows similar structure
– Requires a .inp file to fit the data in Artemis



Mo2C EXAFS Fits

30

• Lack of fit at low values of R
– Poor model or are fit parameters inadequate?



Troubleshooting Mo2C EXAFS Fits
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• Modify fit window to exclude low and high 
values of K (alternate representation of energy)
– Also add absolute value to σ2 parameters

• Mo2C has been successfully synthesized, but is it active for CO2 activation?
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Mo2C Activity and Selectivity

Conversion at 573 K in Flow Reactor Selectivity at 573 K in Flow Reactor

• Mo2C shows similar conversion as bimetallics, but higher selectivity

• High activity from oxidation-recarburization? → Good candidate for in-situ XANES

a) b)



X-Ray Absorption Near Edge Structure (XANES)

• XANES: Near edge region of absorbance 
spectrum, contains electronic information
– Oxidation states

• EXAFS: Extended edge region of 
absorbance spectrum, contains structure 
information 
– Bond distances, nearest neighbors 

and coordination numbers
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In-situ 
Flow Reactor

Image courtesy of Ayman Karim, PNNL



In-situ Flow Reactor (Ayman’s Cell)
• Flow reactor used with glassy carbon tubes for in-situ XAFS measurements

– Glassy carbon tubes allow high transmittance of X-rays
• Can measure products and reactants with in-line RGA (Residual Gas Analyzer)

34
Images courtesy of Ayman Karim, PNNL



Isosbestic Points in XANES Data
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• Occur when a compound is composed of a combination of two parent
species: xA + yB = C, x + y = 1
• Signature indicator for Linear Combination Analysis (LCF)

Isosbestic
Points



Linear Combination Fitting (LCF)
• Recall: High Mo2C activity in CO2 activation could be from an oxidation-

recarburization cycle
– It appears that Mo2C cycles between an oxidized and reduced state

• Can we prove this? Yes, Linear Combination Fitting of XANES data
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Oxy-CarbideMo2C MoO3

OxidationOxidation

ReductionReduction

• LCF requires standards at both sides of the spectrum (Reduced and oxidized)
– Standards cannot be arbitrary Mo compounds



Linear Combination Fitting in Athena
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Results of Linear Combination Fitting

• Mo2C can cycle between a 
reduced and oxidized state 
during CO2 activation

Oxy-CarbideCarbide

CO2 CO/CH4 CH4 CO/CO2

Treatment Percent MoO3 Percent Mo2C

Fresh 16.8 83.2

Reduced 7.3 92.7

CO2 17.3 82.7

CO2 + H2 8.9 91.1

• Catalyst maintains a carburized 
state during reaction



Summary of CO2 Activation

• Mo2C is bifunctional and highly active for CO2 activation
• Structure of Mo2C confirmed using XRD and EXAFS
• Linear combination fitting analysis indicates that Mo2C undergoes 

oxidation-reduction
• In-situ XRD and e-TEM for future studies to investigate long-range 

order of Mo2C
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