Operando XAFS studies of homogeneous and heterogeneous catalysts in liquid-phase reactions

John L. Fulton, Donald L. Camaioni, John C. Linehan

Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington

Mahalingam Balasubramanian

Sector 20, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
Motivation

• Why operando?
 ✓ Capture catalyst structure during reaction
 ✓ Elucidate the active or resting state of the catalyst
 ✓ Evolve and test proposed reaction pathways
 ✓ Direct comparison to DFT and DFT-molecular dynamics methods.
 ✓ Potential for dramatic new insights

• Why XAFS?
 ✓ Oxidation state of catalyst
 ✓ Full coordination structure about the transition-metal
 ✓ Readily applied to broad range of catalyst systems
 ✓ Readily applied under *broad range* operando conditions.
 ✓ Measure kinetics/mechanism of catalyst formation

Operando means:
 ✓ At the reaction temperature (Up to 500 °C)
 ✓ At the reaction pressure (Up to 1 kbar)
 ✓ Using homogeneous or heterogeneous catalysts
 ✓ While collecting kinetic data
 ✓ *While converting the reactants to products*
XAFS of Catalysts

- Detailed local structure about catalyst
 - Distances to ±0.005 Å
 - Coordination numbers (±15%)
 - Disorder, Debye-Waller factor
 - Angular correlation of nearby atoms (multiple scattering)
 - Chemical identity of neighboring atoms
 - Good sensitivity (~ 1 mM)
 - Measure the cluster/nanoparticle size

- Ab initio scattering theory
 - FEFF9

The XAFS process

Interference of incoming and outgoing photoelectron wave in the vicinity of the central atom produces XAFS
Operando XAFS of diverse chemical systems

<table>
<thead>
<tr>
<th>System</th>
<th>Class</th>
<th>Conditions</th>
<th>Importance</th>
<th>XAFS Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Oxidation</td>
<td>400°C, 300 bar H₂O</td>
<td>New green route to polyester</td>
<td>in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(homogeneous)</td>
</tr>
<tr>
<td>II</td>
<td>Dehydrogenation</td>
<td>25°C, 1 bar toluene</td>
<td>Hydrogen storage</td>
<td>in operando</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(homogeneous)</td>
</tr>
<tr>
<td>III</td>
<td>Hydrogenation</td>
<td>100°C, 50 bar H₂</td>
<td>Textbook model for hydrogenation</td>
<td>in operando</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPA, Et₃N</td>
<td></td>
<td>(homogeneous)</td>
</tr>
<tr>
<td>IV</td>
<td>Hydrodeoxygenation</td>
<td>200°C, 50 bar H₂</td>
<td>Model for biomass conversion</td>
<td>in operando</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂O</td>
<td></td>
<td>(heterogeneous)</td>
</tr>
</tbody>
</table>
Characterization of homogeneous \(\text{Mn}^{2+}-\text{Br}^- \) Catalyst

Supercritical Water Process -- \(\text{MnBr}_2 \) ion-pairs are the catalyst.

- Yield appears to be nearly equal to the world’s most efficient oxidation
- Eliminates \(\sim30-40\% \) capital investment to remove / manage 4-carboxybenzaldehyde (side product)
- All state of the art catalysts use cobalt. This uses 10 X cheaper manganese
- What is the structure of the active catalyst species? What is the mechanism of this reaction?

Oxidation

\[
\begin{align*}
\text{CH}_3 &\rightarrow \text{O}_2 \\
\text{O} &\rightarrow \text{Mn}^{2+} \\
\text{CH}_3 &\rightarrow \text{OH} \\
\text{OH} &\rightarrow \text{H}_2\text{O}
\end{align*}
\]

400°C
300 bar
H₂O

Direct sample injection system

Pressure cell

Water @ 400°C
600 bar

“Inert” alloy, Pt:Ir, Ti, etc.

single crystal or polycrystalline diamond window

Pathlength spacer

solution in

X-ray Beam

solution out

High-pressure sample delivery
Diamond-window transmission XAFS cell for low-Z ions

Cell used to study low-Z ions: Cl\(^-\), K\(^+\), Ca\(^{2+}\)

Cell Design (supercritical water)

- **500°C, 600 bar**
- **Beam size: 50-100 microns diameter,** obtained using K-B mirrors
- **Incident flux: \(\sim 10^9 \) photons/sec**
- **Window: \([110]\) diamond**
 - 10 microns thick
- **Pathlength: 50-250 microns**
- **Lowest Energy: 2750 eV.**

• First XAFS studies of low-Z elements in supercritical conditions

• Dramatic changes in the first shell structure
 ✓ Loss of over half the waters of hydration
 ✓ Contact ion pairing with approximately 2 chloride counter ions.
 ✓ Direct measure of the Ca-Cl interaction with bond distances and disorder.

• Important for understanding geochemical and biochemical processes.
Mn$^{2+}$ and Br$^{-}$ Coordination Structure for a SCW Catalyst

Summary

- Complete structural characterization of first-shell "ligands" about Mn$^{2+}$ and Br$^{-}$
- Br• free radical process via charge transfer with Mn$^{2+}$/Mn$^{3+}$ in the contact ion pair

Exciting new oxidation catalyst:

Operando XAFS of diverse chemical systems

<table>
<thead>
<tr>
<th>System</th>
<th>Class</th>
<th>Conditions</th>
<th>Importance</th>
<th>XAFS Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Oxidation</td>
<td>400°C, 300 bar H₂O</td>
<td>New green route to polyester</td>
<td>in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(homogeneous)</td>
</tr>
<tr>
<td>II</td>
<td>Dehydrogenation</td>
<td>25°C, 1 bar toluene</td>
<td>Hydrogen storage</td>
<td>in operando</td>
</tr>
<tr>
<td>III</td>
<td>Hydrogenation</td>
<td>100°C, 50 bar H₂, IPA, Et₃N</td>
<td>Textbook model for hydrogenation</td>
<td>in operando</td>
</tr>
<tr>
<td>IV</td>
<td>Hydrodeoxygenation</td>
<td>200°C, 50 bar H₂, H₂O</td>
<td>Model for biomass conversion</td>
<td>in operando</td>
</tr>
</tbody>
</table>
Importance:

- First-generation H_2 storage compound
- Amine-boranes are a class of compounds having high H_2-storage density
- Facile release of copious quantities H_2
- Need fundamental understanding of catalyst mechanism

Dehydrogenation

$$\text{Me}_2\text{NH} \quad -2 \text{H}_2 \quad \text{BH}_3 \quad \text{Rh} \quad N\text{Me}_2\text{BH}_2 \quad \text{BH}_2\text{NMe}_2$$

25°C
1 bar
toluene
Dehydrogenation

\[
\begin{align*}
2 \text{Me}_2\text{NH} \quad \text{BH}_3 & \quad \xrightarrow{\text{Rh}} \quad \text{NMe}_2 \quad \text{BH}_2 \\
& \quad \text{BH}_2 \quad \text{NMe}_2
\end{align*}
\]

25°C
1 bar
toluene

The Reaction

\[
\begin{align*}
2 \quad \text{Me}_2\text{NH} \quad \text{BH}_3 & \quad \xrightarrow{\text{Rh}} \quad 2 \quad \text{Me}_2\text{N} \quad \text{BH} \\
& \quad + \quad 2 \quad \text{H}_2 \quad \xrightarrow{\text{Toluene} \ 25 \text{ C}} \quad \text{NMe}_2 \quad \text{BH}_2 \\
& \quad \text{BH}_2 \quad \text{NMe}_2
\end{align*}
\]

The Catalyst

Precursor

[\text{Rh}(1,5\text{-cyclooctadiene})\text{Cl}]_2

✓ Reaction solution is black (common for nanoparticles)
✓ Forms black precipitate at completion
✓ Literature identifies 2 nm Rh(0) nanoparticles by \textit{ex-situ} TEM (Manners, et al, JACS, 2003, 125, 9424)
Dehydrogenation

$$2\text{Me}_2\text{NH} + \text{BH}_3 \rightarrow 2\text{NMe}_2 + \text{BH}_2 \text{Rh}$$

25°C
1 bar
toluene

In Situ Rh K-edge XAFS during catalysis

Energy (eV)

Dehydrogenation

\[\text{Me}_2\text{NH} \xrightarrow{-2 \text{H}_2} \text{NMe}_2-\text{BH}_2 \]

\[\text{BH}_2-\text{NMe}_2 \]

25°C
1 bar
toluene

Refined structure from operando XAFS

Aerobic reaction conditions

- In presence of O$_2$, Rh(0) metal is formed
- The BN ligand is oxidized and it no longer stabilizes the Rh cluster
- Sampling of the anaerobic catalyst for *ex situ* analysis would be difficult or impossible

4 other precursors shown to transform to Rh$_4$ clusters decorated with ligands in O$_2$ free reaction cells.
Operando XAFS of diverse chemical systems

<table>
<thead>
<tr>
<th>System</th>
<th>Class</th>
<th>Conditions</th>
<th>Importance</th>
<th>XAFS Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Oxidation</td>
<td>400°C, 300 bar H₂O</td>
<td>New green route to polyester</td>
<td>in situ (homogeneous)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Dehydrogenation</td>
<td>25°C, 1 bar toluene</td>
<td>Hydrogen storage</td>
<td>in operando (homogeneous)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Hydrogenation</td>
<td>100°C, 50 bar H₂</td>
<td>Textbook model for hydrogenation</td>
<td>in operando (homogeneous)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPA, Et₃N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Hydrodeoxygenation</td>
<td>200°C, 50 bar H₂</td>
<td>Model for biomass conversion</td>
<td>in operando (heterogeneous)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H₂O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Benzene Hydrogenation

The Reaction

\[
\text{C}_6\text{H}_6 + \text{H}_2 \xrightarrow{\text{Rh}} \text{C}_6\text{H}_{12} + \text{H}_2\text{O}
\]

100°C
50 bar \(\text{H}_2\)
2-propanol triethylamine

The Catalyst

Precursor

- Reaction solution is black (common for nanoparticles)
- Literature identifies Rh(0) nanoparticles
- Textbook model for hydrogenation
History of this reaction

- 1975 Maitlis proposes that $[\text{Cp}^*\text{RhCl}_2]^2_2$ hydrogenates benzene "homogeneously" i.e. no metallic particles.
- Controversy for next 30 years
 - Recent volumes state many "homogeneous" catalyzed reactions are actually catalyzed by small amounts of metallic nanoparticles
 - "Benzene hydrogenation is a telltale sign of heterogeneous catalysis"
- 2005 Finke shows benzene is hydrogenated by rhodium metal nanoparticles formed from $[\text{Cp}^*\text{RhCl}_2]^2_2$
 - Kinetics studies
 - *Ex situ TEM and Ex situ XPS*
 - Hg poisoning test
- In collaboration with Finke took another look using *operando* XAFS

Hydrogenation

100°C
50 bar H₂
IPA, Et₃N

Operando XAFS cell

H₂ delivery system

2-phase reaction
The precatalyst \([\text{RhCp}^*\text{Cl}_2]_2\) evolves primarily to a single new form of rhodium during the catalysis.

XAFS shows the formation of ligated \(\text{Rh}_4\) cluster
Hydrogenation

\[\text{Hydrogenation} \quad \begin{array}{c}
\text{Benzene} \\
\rightarrow \\
\text{PPH}_3
\end{array} \]

100°C
50 bar H\(_2\)
IPA, Et\(_3\)N

Refined structure from operando XAFS

Active Rh\(_4\) Complex

FEFF8 model fit

Rh precursor

Rh metal/foil

<table>
<thead>
<tr>
<th>bond</th>
<th>N</th>
<th>r/Å</th>
<th>(\sigma^2/\text{Å}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh-Rh</td>
<td>3.0±0.1</td>
<td>2.71±0.004</td>
<td>0.007±0.001</td>
</tr>
<tr>
<td>Rh-Cp*</td>
<td>0.6±0.1</td>
<td>2.22±0.012</td>
<td>0.005±0.002</td>
</tr>
<tr>
<td>Rh-Cl</td>
<td>1.3±0.5</td>
<td>2.32±0.031</td>
<td>0.013±0.009</td>
</tr>
<tr>
<td>Rh-Rh in metal</td>
<td>12</td>
<td>2.68±0.002</td>
<td>0.004±0.0005</td>
</tr>
</tbody>
</table>

Rh metal higher shells

FEFF8 : Fit Results

R, Å
Summary

• This reaction has never been studied by XAFS because of difficulty of working with H₂ pressurized systems
• A Rh₄ cluster is the catalytic species
 ✓ Rh-Rh bond lengths (2.71Å) and coordination numbers (3) consistent with Rh₄ cluster.
 ✓ No higher shell Rh-Rh atoms are present as would be necessary for nanoparticles.
 ✓ Rh₄ cluster with Cp*, benzene, IPA or chloride ligands
• Just as with the ammonia borane systems under aerobic conditions, O₂ oxidizes the ligands leading to metallic Rh (nanoparticles).
 ✓ Sampling of the anaerobic catalyst for ex situ analysis would be difficult or impossible
• Are there a series of Rh₄-6 clusters that are the active catalysts for both hydrogenation and dehydrogenation reactions?
• The true catalyst structure is only apparent under operando conditions

Operando XAFS of diverse chemical systems

<table>
<thead>
<tr>
<th>System</th>
<th>Class</th>
<th>Conditions</th>
<th>Importance</th>
<th>XAFS Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Oxidation</td>
<td></td>
<td>400°C, 300 bar, H₂O</td>
<td>in situ (homogeneous)</td>
</tr>
<tr>
<td>II</td>
<td>Dehydrogenation</td>
<td></td>
<td>25°C, 1 bar toluene</td>
<td>in operando (homogeneous)</td>
</tr>
<tr>
<td>III</td>
<td>Hydrogenation</td>
<td></td>
<td>100°C, 50 bar H₂, IPA, Et₃N</td>
<td>in operando (homogeneous)</td>
</tr>
<tr>
<td>IV</td>
<td>Hydrodeoxygenation</td>
<td></td>
<td>200°C, 50 bar H₂, H₂O</td>
<td>in operando (heterogeneous)</td>
</tr>
</tbody>
</table>
Reaction pathway for phenol hydrodeoxygenation

\[
\text{OH} \xrightarrow{\text{Pd/C, H}_2} \text{O} \xrightarrow{\text{Pd/C, H}_2} \text{OH} \xrightarrow{\text{H}_3\text{PO}_4} \xrightarrow{\text{Pd/C, H}_2} \]

Step 1: Hydrogenation
(TOF): 6.2×10^3 h$^{-1}$

Step 2: Hydrogenation
Rate: 1.2×10^4 h$^{-1}$

Step 3: Dehydration
Rate: 15 h$^{-1}$

Step 4: Hydrogenation
Rate: 9×10^6 h$^{-1}$

- Importance:
 - Key step in a new lignocellulose conversion by Lercher et al. to diesel/jet fuels
 - Water is the inherent, “green” reaction solvent
 - In water, the pathways, rates and selectivities are dramatically different
 - Large literature base on Pd nanoparticle catalysis
 - Little is known about the effect of water
 - What is the role of water for Pd nanoparticle catalysis?
 - State of the Pd metal?
 - Surface species?
 - Does water mediate reactant and product binding?

Hydrodeoxygenation

200°C
50 bar H₂
H₂O

XAFS Challenges:
- High temperature, high pressure
- Liquid and gas (H₂) phase equilibrium
- Heterogeneous (Pd/C) catalyst

Operando XAFS cell

- Glassy-carbon window
- X-ray beam
- Porous cylinder to center catalyst in beam
- Stir bar

2-phase reaction
H₂

Heterogeneous

Pd nanoparticles on carbon

IV

HO

H₂

Pd/C

→

Glassy-
carbon

window

X-ray beam

Porous cylinder to center catalyst in beam

Stir bar

Hydrodeoxygenation (IV)

H₂

OH

26
IV Hydrodeoxygenation

200°C

50 bar H₂

H₂O

Reaction platform installed at the beamline

XAFS cell

XAFS spectrum @ 200°C

- Pd “metal” nanoparticle
- Pd hydride nanoparticle

High S/N with two 10 min scans

H₂ lecture bottle

H₂ reaction reservoir

High-temperature enclosure

X-ray beam

Stirrer
Hydrodeoxygenation

\[
\text{HO} \quad \overset{\text{H}_2}{\underset{\text{Pd/C}}{\longrightarrow}} \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3
\]

200°C
50 bar H\(_2\)
H\(_2\)O

Addition of phenol regenerates the “metal” from the hydride.

Catalyst state during the reaction sequence

- **As-received Pd/C nanoparticles**

 \(T = 25^\circ\text{C}\)
 \(t = 0\) min

- **Pd “metal” nanoparticles**

 \(T = 200^\circ\text{C}\)
 \(t = 3\) min

- **Pd hydride nanoparticles**

 \(T = 200^\circ\text{C}\)
 \(t = 200\) min

- **Add reactants**

- **End of reaction**

- **Add phenol**

- **Pd hydride nanoparticles**

 \(T = 200^\circ\text{C}\)
 \(t = 210\) min

- 2.7 nm

- ✓ Addition of phenol regenerates the “metal” from the hydride.
Metal hydride nanoparticle structure is virtually identical between pure H₂ and H₂O solvation environments (~50% surface/50% core Pd sites).

No evidence of a specific water interaction with hydrided metal surface.

Interactions are diffuse. Suggest that the hydride surface is mostly hydrophobic.

The role of water

- Hydrodeoxygenation

IV

200°C
50 bar H₂

Pd/H₂O region

2.7 nm Pd nanoparticles in pure H₂

2.7 nm Pd nanoparticles in H₂O

0.5
1

R (Å)

Pd-Pd

Pd-H₂O region

Pd-Pd 2nd

Pd-Pd 3rd

Pd-Pd 4th

200°C
50 bar H₂

DFT-MD water on Pd(111)

Phenol binds to surface

Water diffusely interacts

Surface hydride may further weaken interaction

Courtesy Donghai Mei/ PNNL
2.7 nm Pd
5% Pd/C
5 wt% Phenol/H₂O
0.5 wt% H₃PO₄/H₂O
50 bar @ 200 °C

Near the end of the reaction there is a rapid phase transition to Pd-hydride nanoparticles.
The process is reversible with addition of more phenol.
Important insights to the mechanism of the hydrogenation step.

Spectra recorded at 2 m intervals.
We establish the chemical state of Pd nanoparticles in water and follow evolution of the Pd hydride formation.

Pd hydride nanoparticle structure is virtually identical in pure H$_2$ and liquid H$_2$O environments.

No evidence for the particles interacting with water, with phenol, cyclohexanone, or cyclohexanol at 200 °C.

Equilibrium between Pd metallic and Pd hydride forms provides key insights into the reaction mechanism.

The true catalyst structure is only apparent under operando conditions.

Guidelines for *operando* XAFS

- Design XAFS cell specifically for the chemistry
 - ✓ Use the beamtime most efficiently
- Do your homework beforehand
 - ✓ Optimize for transmission (if possible),
 - ✓ Optimize edge heights/pathlengths
 - ✓ Test chemistry in cell before arriving
- Review plan with beamline scientist
- Bring all (!) the chemistry to the beamline
 - ✓ Utilize the beamline labs
- Preplan detailed experiment list
 - ✓ Evaluate results “real time”
 - ✓ Amend as necessary during run
- Bring enough manpower.

vitreous carbon window for operation at 200 °C, 50 bar
Overall Summary

• The XAFS method can be applied to almost any reacting chemical system
 ✓ Extremes of temperature and pressure
 ✓ Multi-phase systems
 ✓ Homogeneous and heterogeneous systems

• Operando XAFS is required to help establish the active state of the catalytic species
 ✓ Combination of XAFS and DFT-MD provides powerful method to establish details of the reaction mechanism
 ✓ XAFS combined with other methods such as analysis of reaction kinetics, NMR, or mass spectrometry can shed valuable light on catalytic mechanisms.

Work supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

XSD-PNC, sector 20 facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy, Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the PNNL, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.