A Lattice Field Theory Primer

T. Blum

University of Connecticut and RIKEN BNL Research Center
Outline

• Introduction
• Lattice Fermions
• Calculating masses and matrix elements
• Accessing the chiral limit
• Renormalization of Operators
• Systematic errors
Physical observables in QFT calculated in path integral formulation. Schematically,

\[\langle O \rangle = \frac{1}{Z} \int d[U] O(U) \exp \left(-i g S(U) \right) \]

If coupling g is small, expand exponential. $\langle O \rangle$ is calculated to some prescribed order in the coupling, g^n. Use Feynman diagrams.
If coupling is not small (low energy QCD) can’t expand exponential. Or if bound states required can’t use PT. Just do the whole integral. Use lattice/numerical monte-carlo techniques.

Either way, integrals are in general divergent: ∞ number of degrees of freedom (fields) that can take values from $-\infty$ to $+\infty$.

Must make them finite \rightarrow regularize. Many ways to do this, but must be careful not to destroy symmetries of the original theory (at least they must be recovered when the regulator is removed).
Non-perturbative regularization

Discretize the continuum action on a four-dimensional (Euclidean) space-time lattice with *spacing* \(a \). [K.G. Wilson, 1974]

- Long dist (low energy) physics is insensitive to \(a \) (scaling)
- Path integrals finite: finite number of degrees of freedom (sites)
- Momentum cut-off \(p_{\text{max}} \sim 1/a \)
Do this in a *gauge invariant* way

Replace continuum vector potential (Gluon fields), $A_\mu = A^a_\mu \chi^a$ with

$$A_\mu(x) \rightarrow U_\mu(x) = e^{-igaA_\mu(x)}$$

The “link” $U_\mu(x)$ is an element of the group SU(N), with gauge transformation $g(x)$

$$U_\mu(x) \rightarrow g(x) U_\mu(x) g(x + \hat{\mu})^\dagger \quad U_\mu(x), \; g(x) \in SU(N)$$

So a path-ordered product of link fields transforms like

$$g(x) U_\mu(x) U_\mu(x + \hat{\mu}) \cdots U_\nu(y) g(y + \hat{\nu})^\dagger$$
If the path is a closed loop, e.g.

\[g(x) U_\mu(x) U_\nu(x + \hat{\mu}) U^\dagger_\mu(x + \hat{\nu}) U^\dagger_\nu(x) g(x)^\dagger \]

And we take the trace, it is gauge invariant. Generally true that the trace of (any) closed path-ordered product of links is gauge invariant.
Treating the fermions is (naively) straightforward. Transcribe the continuum field $\psi(x)$ to the lattice site x.

$$\psi(x) \rightarrow \psi_x^\text{latt}$$

Under a gauge transformation,

$$\psi_x^\text{latt} \rightarrow g(x) \psi_x^\text{latt}$$
$$\overline{\psi}_x^\text{latt} \rightarrow \overline{\psi}_x^\text{latt} g^{-1}(x)$$
Construct the action.

Work in Euclidean space: analytically continue $t \rightarrow i\tau$ (Wick rotate) so metric is

$\text{diag}(1,1,1,1)$ and not $\text{diag}(-1,1,1,1)$.

Covariant and contravariant indices mean the same thing.
Fermions first.

For a single flavor

\[S_f = \int d^4x \overline{\psi}(x)(\not{D} + m)\psi(x) \rightarrow \overline{\psi}_x M_{xy} \psi_y \]

\(\psi \) is now a 12 component vector (3 colors \(\times \) 4 spins) at each site on the lattice.

Fermion matrix is a 12 \(\times \) 12 matrix each pair of n.n. sites

\[M_{xy} = \sum_\mu \gamma_\mu \frac{U_\mu(x) \delta_{x+a\hat{\mu},y} - U_\mu^\dagger(x - \hat{\mu}) \delta_{x-a\hat{\mu},y}}{2} + am \delta_{x,y} \]

Factors of the links make the lattice action gauge-invariant.

A large, sparse matrix: \((L^4 \times 12) \times (L^4 \times 12)\). Can invert it in \(O(12 \times L^4)\) operations, not \(O((12 \times L^4)^2)\).
Gluon action

\[S_g = \int d^4 x \left(\frac{1}{4} F_{\mu \nu} F_{\mu \nu} \right) \rightarrow S_g^{\text{latt}} = \frac{6}{g^2} \sum_{\text{sites}} \sum_{\mu > \nu} (\mathcal{R} \text{Tr} \Box_{\mu \nu}) \]

Which you can check by expanding

\[\lim_{a \to 0} U_{\mu}(x) = 1 - i g a A_{\mu}(x) + \cdots \]

and neglecting terms of \(\mathcal{O}(a^2) \) and higher.

At this point, the lattice action, \(S_f + S_g \), has all the symmetries of the continuum, except Euclidean (Lorentz) invariance which is broken down to (invariance under) the Hypercubic group \(\text{H}(4) \).
The continuum limit, $a \to 0$ (remove the regulator).

Adjust bare coupling, $6/g^2$, and quark mass(es) $a m$ to give some observable its physical value, say M_N/M_ρ. Move toward $a=0$, $g, m \to 0$ keeping M_N/M_ρ fixed. Predict all other (ratios of) physical observables on this (renormalization “group”) trajectory.
How do we know this works?
Answer: asymptotic freedom of QCD: non-trivial continuum limit

For sufficiently small g, solution of the QCD β function (physics does not depend on the lattice spacing (regulator)) reads:

$$a \Lambda_{QCD} = (g^2 \gamma_0)^{-\gamma_1/(2\gamma_0^2)} \exp (-1/(2\gamma_0^2 g^2)(1 + O(g^2)))$$

On lattice then, in the asymptotic scaling regime, all observables scale this way, so in particular, ratios of physical observables (e.g. M_N/M_ρ, or anything else you can think of) are independent of the lattice spacing→ the renormalization group trajectory.
In practice, the scaling regime is hard to access:

“critical slowing down”: as $a \to 0$ lattice correlation lengths diverge. Physics is scale invariant. Continuum limit is a 2nd order phase transition.

Instead, simulate at several values of $6/g^2$ (modest lattice spacings) and several quark masses at each lattice spacing.

Extrapolate in quark mass to desired physical point, then extrapolate to $a \to 0$ in leading discretization error, i.e. linear or quadratic in a.
Monte Carlo Simulation

Back to the path integral

\[\langle \mathcal{O} \rangle = \frac{1}{Z} \int d[\bar{\psi}, \psi, U] \mathcal{O}(\bar{\psi}, \psi, U) \exp (-i S(\bar{\psi}, \psi, U)) \]

Analytically continue (Wick rotate) to Euclidean space-time so the integrand behaves sensibly:

\[\langle \mathcal{O}_E \rangle = \frac{1}{Z_E} \int d[\bar{\psi}, \psi, U] \mathcal{O}_E(\bar{\psi}, \psi, U) \exp (-S_E(\bar{\psi}, \psi, U)) \]

(Now drop all “E” subscripts)

Fermion integrals are Gaussian, do them analytically.

\[\langle \mathcal{O} \rangle = \frac{1}{Z} \int [dU] \mathcal{O}(U) \det(M(U))^{n_f} e^{-S_g(U)} \]
det(M(U))^{n_f} e^{-S_g} is an ordinary probability weight: do the integral over gauge fields numerically by Monte Carlo simulation (stat. mech. in d+1 dimensions).

Use *importance sampling* to generate an ensemble of gauge field configurations (O(100 – 1000) independent ones):

- 1 configuration = set of link variables over entire lattice
- update algorithm: choose links randomly
- algorithm must satisfy detailed balance and ergodicity
• generate configurations with probability \(\text{det}(M(U))^{n_f e^{-S_g}} \)

• Observables become simple averages over configurations.

Simulation with \(\text{det}(M(U)) \) (dynamical fermions) is costly. \(\text{det}(M(U)) = 1 \) is the quenched approximation, i.e., no virtual quark loops in the vacuum \((m_q \rightarrow \infty) \).
Fermion discretizations
(why not naive fermions?)

\[\bar{\psi} \not{D} \psi \rightarrow \bar{\psi} \gamma_\mu (\psi(x + \hat{\mu}) - \psi(x - \hat{\mu}))/2a \]

\[G_{latt}(p) = \frac{i \gamma_\mu \sin(\alpha p_\mu)}{\sum_\mu \sin^2(\alpha p_\mu)} \rightarrow \frac{i \gamma_\mu \alpha p_\mu}{\sum_\mu (\alpha p_\mu)^2}. \]

\(G_{latt}(p) \) has a pole at each corner of the Brilloiun zone:
\(p^\mu = (\pi/a,0,0,0), (0,\pi/a,0,0), \ldots, (\pi/a,\pi/a,\pi/a,\pi/a) \)

Lattice theory corresponds to \(2^d \) fermion flavors instead of one.
These extra fermions are called **doublers**. Appeared because of the inherent periodicity of the lattice.

Minkowski space dispersion relation ($E = |p|$)

Even worse for the Standard model, the doublers appear in pairs with opposite chirality—theory is **vector-like** (*Nielsen-Niyomiyia No-Go theorem*). Deep connection to gauge-invariance.
Must get rid of the doublers.

1. **Wilson fermions.** Add an irrelevant term to the action

\[
S_W = \frac{a}{2} \bar{\psi} \partial^2 \psi \\
\sim \frac{1}{a} \sum_\mu 1 - \cos(p_\mu)
\]

Like a mass term. Doubler mass \(\sim 1/a \), and they decouple.
Problems with Wilson Fermions:

- Chiral symmetry (of QCD) is explicitly broken, badly broken. (flavor symmetry is still exact, as in the continuum)

- Chiral limit $\neq m_q \to 0$.

- Complicated **fine tuning** (operator mixing) of observables required for correct chiral behavior.

- Errors are $O(a)$: slow approach to the continuum (can be improved to $O(a^n)$ $n = 2$ now, big job)

All problems solved as $a \to 0$
2. Kogut-Susskind.

Spin diagonalization. Throw away 3/4 of components: 16 Dirac fermions = 64 components → 16. One component “spinor” on a lattice site.

Exact remnant chiral symmetry, so \(m_q \to 0 \) is the chiral limit.

Can reconstruct 4 Dirac fermions from components in \(2^4 \) hypercube. In the continuum limit this is a theory of 4 degenerate quarks. For \(a \neq 0 \) flavor, spin, and space-time symmetries are mixed.

Take fractional power of fermion determinant to simulate real QCD (2+1 flavor).
Problems with Kogut-Susskind fermions

- Have to take fractional powers of the determinant!

- Flavor symmetry is broken: one light pion instead of $16 - 1 = 15$

- Relation to continuum operators can be very difficult to work out

- Errors are $O(a^2)$ but are unusually large because of flavor symmetry violation. Again, slow approach to continuum. Can be improved: now the state-of-the-art for dynamical fermion simulations (a^2-tad).

Discovered in 1987 (then forgotten) the most chiral symmetry that a lattice theory can have

\[\gamma_5 D + D \gamma_5 = a DR \gamma_5 D \]
\[\gamma_5 D^{-1} + D^{-1} \gamma_5 = a R \gamma_5 \]

Meanwhile, domain wall fermions (DWF) (Kaplan 1992) and later overlap fermions (Neuberger 1997) were discovered. Worked for vector gauge theories. Hasenfratz rediscovered the G-W relation, and it was soon realized that DWF and overlap are examples (with \(R = 1/2 \)).
G-W fermions Remove the doublers while (essentially) preserving full $SU(N_f)_L \times SU(N_f)_R$ chiral symmetry of the continuum at non-zero lattice spacing.

We (RBC) use domain wall fermions (Shamir 1993)

Errors are $O(a^2)$
Problems with Ginsparg-Wilson fermions

- Expensive!

- 1st large-scale dynamical fermion simulation done here at BNL (and Columbia University). Light (up and down) quark mass 1/2 to 1 times $m_{strange}$ (need to reduce by 10). Volume is not large ($\sim (2\text{fm})^3$), and only one lattice spacing.

- Took almost 2 years on our own supercomputer (QCDSP)!

Continuum-like properties \rightarrow approach to continuum is faster

New computer(s) coming: QCDOC ($\times20$ faster, 5 TFlops/sustained)
Masses and Matrix elements from Euclidean space correlation functions.

Consider the pseudo-scalar meson (pion) 2-point correlation function

$$J_5(t) = \sum \bar{\psi}(x, t) \gamma_5 \psi(x, t) e^{\vec{p} \cdot \vec{x}}$$

Sum over \vec{x} projects onto the state with momentum \vec{p}

The zero momentum correlation function reads

$$C(t) = \sum \langle 0 | \bar{\psi}(x, t) \gamma_5 \psi(x, t) \bar{\psi}(0, 0) \gamma_5 \psi(0, 0) | 0 \rangle$$

Wick contract fields into quark propagators

$$C(t) = \sum \text{Tr} \left[M_{0; x, t}^{-1} \gamma_5 M_{x, t; 0}^{-1} \gamma_5 \right]$$
What's it good for?

Use time-translation operator \(U = \exp(-Ht) \) and insert a complete set of states (\(H \) is the QCD Hamiltonian, and the states are eigenstates of \(H \)) (in Euclidean space there is no \(i \) in \(U \))

\[
C(t) = \sum_x \langle 0| e^{Ht} \bar{\psi}(x) \gamma_5 \psi(x) e^{-Ht} \bar{\psi}(0) \gamma_5 \psi(0) |0 \rangle = \sum_x \langle 0| e^{Ht} \bar{\psi}(x) \gamma_5 \psi(x) e^{-Ht} \sum_n \frac{|n\rangle\langle n|}{2E_nV} \bar{\psi}(0) \gamma_5 \psi(0) |0 \rangle = \sum_n \langle 0| \bar{\psi} \gamma_5 \psi |n \rangle\langle n| \bar{\psi} \gamma_5 \psi |0 \rangle \frac{e^{-E_n t}}{2E_nV} = \lim_{t \to \infty} \frac{|\langle 0| \bar{\psi} \gamma_5 \psi |\pi \rangle|^2}{2m_\pi} e^{-m_\pi t}
\]

Fit yields physical particle mass and matrix element.
or the nucleon 3 point correlation function,

\[\langle \chi_N(p', t') \sum_x e^{i \vec{q} \cdot \vec{x}} [\bar{\psi}_q(x, t) \Gamma_\mu \psi_q(x, t)] \chi^\dagger_N(p, 0) \rangle \rightarrow \sum_{s,s'} \langle 0 | \chi_N(p', s') | p', s' \rangle \langle p', s' | \Gamma_\mu(q) | p, s \rangle \langle p, s | \chi^\dagger_N(p, s) | 0 \rangle \times e^{-E t - E' (t' - t)} \frac{2 E 2 E'}{2 E 2 E'} \]

where \(t' \gg t \gg 0 \), \(\vec{q} = \vec{p'} - \vec{p} \), and \(\chi_N \) is the nucleon interpolating operator.

Euclidean space continued LSZ reduction formula that relates (the Fourier transform of) Minkowski space Greens functions to S-matrix elements. Exponentials pick them out instead of poles.
This always works for single-particle states (like nucleon matrix elements).

For multi-particle states (i.e. non-leptonic decays) this is much more difficult.
Accessing the chiral limit, $m_q \to 0$

Ideally, adjust the quark masses in our simulations until observables (masses, decay constants, ...) match their physical values. For example, adjust m_u and m_d until the pseudo-scalar meson mass is $m_{\pi} = 135$ MeV. Knowing the value of the light quark masses, we can predict the proton mass, neutron mass, f_π, etc.
Not so simple. The chiral limit, $m \to 0$ is difficult.

- “cost” of quark propagator M^{-1}: #iterations $\sim \frac{1}{m}$

- Compton wavelength of the pion $\frac{1}{m_\pi} \to \infty$ as $m_q \to 0$, so must take $V \to \infty$ to avoid finite volume effects

- Instead, work at unphysical (larger) m_q and extrapolate to the physical regime (chiral limit). Use Chiral Perturbation Theory as a guide.
Chiral Perturbation Theory (S. Weinberg)

Low energy effective field theory of QCD. Systematic expansion in p^2, around $p^2 = 0$ (chiral limit). (Pseudo-) Goldstone bosons are the only degrees of freedom left.

$$\mathcal{L}^{(2)}_{QCD} = \frac{f^2}{8} \text{tr}[\partial_\mu \Sigma^\dagger \partial^\mu \Sigma] + \frac{f^2 B_0}{4} \text{tr}[\chi^\dagger \Sigma + \Sigma^\dagger \chi]$$

$$\Sigma = \exp \left[\frac{2i \phi^a \lambda^a}{f} \right]$$

$$\Sigma \rightarrow V_L \Sigma V_R^\dagger \quad \text{(under a chiral transformation)}$$

\(\Sigma\) is the unitary chiral matrix field \((V_L, R \in SU(N_f))\), \(\lambda^a\) are proportional to the Gell-Mann matrices with \(\text{tr}(\lambda_a \lambda_b) = \delta_{ab}\), \(\phi^a\) are the real pseudoscalar-meson fields, and \(f\) is the meson decay constant in the chiral limit. \(\chi = (m_u, m_d, m_s)_{\text{diag}}\)
To lowest order

\[m_\pi^2 = B_0 (m_u + m_d) \]
\[m_K^2 = B_0 (m_d + m_s) \]

\ldots

At this order, we can work with mesons made from *degenerate* quarks, so the quark masses corresponding to the physical mesons are

\[m_l = \frac{m_u + m_d}{2} \]
\[m_s/2 = \frac{m_d + m_s}{2} \]
Can go to higher order in χPT ($\mathcal{O}(p^4)$)

RBC $n_f = 2$ dynamical quark simulation:

\[f_K/f_\pi = 1.194(12) \text{ (statistical error only)} \]
Operator Renormalization

In lattice QCD calculations, we often calculate matrix elements of local operators generated by an Operator Product Expansion (OPE) of a non-local operator (usually a product of two currents). e.g. DIS, or non-leptonic Weak decay of hadrons.

We do this out of necessity since the physical processes can not be calculated purely perturbatively or non-perturbatively.

\[A^{\text{phys}} = \sum_n C_n(\mu) \langle f | O_n(\mu) | i \rangle \]

\(A^{\text{phys}} \) and states do not depend on scale \(\mu \).
Define finite, renormalized operator at scale μ

$$\mathcal{O}(\mu) = Z_{\mathcal{O}}(a\mu)\mathcal{O}(a)$$

$Z_{\mathcal{O}}(a\mu)$ can be computed:

- In lattice perturbation theory
- Non-perturbatively (RI-MOM) (mimic perturbation theory \sim very high order perturbative calculation)
- Perturbative matching to $\overline{\text{MS}}$, or whatever scheme is used to compute $C_n(\mu)$
Lattice complications:

Broken symmetries (Lorentz, chiral symmetry, flavor, ...) \(\Rightarrow\) operator mixing

Non-perturbative renormalization (NPR) \textit{required} when mixing with lower dimensional operators occurs. These are power divergent in the lattice spacing \(a^{-(d-d')}\) instead of the usual logarithmic divergence \(\log(a\mu)\) (... domain wall fermions)
To calculate Z_O compute Landau gauge off-shell matrix elements of $O(a)$ between quark and/or gluon states

$$\text{Tr} V_O(p^2) \Gamma \bigg|_{p^2 = \mu^2} \frac{Z_O}{Z_q} = 1$$

- $V_O(p^2)$ the amputated vertex constructed from the full non-pert quark propagator
- Γ a projector

This defines the MOM scheme. Extrapolate to $m_f \rightarrow 0$ and we have the RI scheme (Regularization Independent).

\(Z_s(\mu^2) (\bar{\psi} \psi) \) renormalization factor, and divided by 3-loop perturbative running.

RBC (2001).
Statistical and Systematic errors

- Finite sample of configurations: statistical errors
- Finite volume
- Non-zero lattice spacing
- Chiral limit
- Quenched approximation

Lattice Gauge Theory provides a first principles framework to solve QCD, with (in principal) arbitrary precision.