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MotivationMotivation

Consider a composite system (molecules, atoms, Consider a composite system (molecules, atoms, 
nuclei, nucleon,…)  with intrinsic angular momentum nuclei, nucleon,…)  with intrinsic angular momentum 
S (spin)S (spin)
The spin must arise from the dynamics of the The spin must arise from the dynamics of the 
underlying  constituents.underlying  constituents.
Roughly speaking, one may writeRoughly speaking, one may write

S = S = ΣΣii ssii + + ΣΣii lli    i    

the sum of the spin and orbital angular momentum the sum of the spin and orbital angular momentum 
of the constituents.  (nonof the constituents.  (non--relativistic)relativistic)
How do we write down such expression in quantum How do we write down such expression in quantum 
field theory and what are the complicationsfield theory and what are the complications??



NonNon--Relativistic and RelativisticRelativistic and Relativistic
Quantum MechanicsQuantum Mechanics

In nonIn non--relativistic quantum mechanics, spin is relativistic quantum mechanics, spin is 
introduced by hand, not by theoretical introduced by hand, not by theoretical 
consistencyconsistency
In relativistic quantum mechanics, spin is a In relativistic quantum mechanics, spin is a 
consequence of the consequence of the spacetimespacetime symmetrysymmetry. . 

All experimental evidences so far indicate All experimental evidences so far indicate 
that that spacetimespacetime is a flat, fouris a flat, four--dimensional dimensional 
MinkowskiMinkowski space with signature = (1, space with signature = (1, ––1, 1, ––1, 1, ––1), 1), 
(when gravity is ignored)(when gravity is ignored)
xxµµ = (x= (x00,, xx11, , xx22, x, x33) = (x) = (x00,, xxii) ) 

Symmetry Symmetry --> Conservation Law > Conservation Law -->Quantum >Quantum 
NumbersNumbers



PoincarePoincare GroupGroup
The The spacetimespacetime is invariant under the is invariant under the PoincarePoincare
transformations transformations 
–– TranslationsTranslations

xxµµ ——> > xxµµ + a+ aµµ, , 
4 parameter transformations4 parameter transformations

–– LorentzLorentz transformations (rotations)transformations (rotations)
xxµµ ——> > ΛΛµµ

νν xxνν

ΛΛµµ
ααΛΛαα

νν = g= gµµ
νν (length is invariant)(length is invariant)

6 parameters6 parameters: : 3 for spatial rotations in (3 for spatial rotations in (ijij) plane;) plane;
3 for 3 for LorentzLorentz boosts in iboosts in i--directiondirection..

All All transfomationstransfomations form a 10 form a 10 parapara. . PoincarePoincare groupgroup
–– Contracted SO(3,2) groupContracted SO(3,2) group



Generators of TransformationsGenerators of Transformations

In quantum mechanical Hilbert space, all In quantum mechanical Hilbert space, all PoincarePoincare
transformations are represented by unitary transformations are represented by unitary 
operators  U(operators  U(ΛΛ, a), a)

U(U(ΛΛ, a) U, a) U††((ΛΛ, a) = U, a) = U†† ((ΛΛ, a) U, a) U ((ΛΛ, a) = 1, a) = 1

Finite transformations can be built out of Finite transformations can be built out of 
infinitesimal ones with infinitesimal ones with 

ΛΛµνµν = I= Iµνµν + + ωωµνµν with  with  ωωµνµν = = –– ωωνµνµ

aaαα = = εεαα , , 
U(U(ΛΛ, a) = I , a) = I –– i i ωωµνµν JJµνµν /2 + i /2 + i εεααPPαα

JJµνµν and and PPαα are are hermitianhermitian operators in the Hilbert operators in the Hilbert 
spacespace and are the generators of the and are the generators of the PoincarePoincare
transformations.transformations.



Physical ObservablesPhysical Observables

Thus the Thus the spacetimespacetime symmetry predicts the symmetry predicts the 
existence of the following existence of the following physical observables physical observables 
for for anyany physical system,physical system,
–– PP00 = H is the = H is the hamiltonianhamiltonian of the system, of the system, 
–– PPii is the linear momentum is the linear momentum 
–– JJii = = εεijkijk JJjkjk/2 is the angular momentum/2 is the angular momentum
–– KKii = J= Ji0i0 generates generates LorentzLorentz boostsboosts

KKii is not a familiar observable because we usually choose is not a familiar observable because we usually choose 
to to diagonalizediagonalize other observables, like ladder operators in other observables, like ladder operators in 
angular momentum angular momentum algeraalgera..
However, in lightHowever, in light--cone quantization, states are chosen to cone quantization, states are chosen to 

have simpler behavior under boostshave simpler behavior under boosts..



PoincarePoincare AlgebraAlgebra

PoincarePoincare generators satisfy the following algebragenerators satisfy the following algebra
[[PPαα, , PPββ]=0,]=0,

[[JJµνµν, , PPαα] = ] = i(gi(gααννPPµµ –– ggααµµPPνν))

[[JJµνµν,, JJααββ]] = = i(gi(gννααJJµµββ –– ggµµααJJννββ ++ ggννββJJααµµ –– ggµµββ JJαανν))

Any physical system represents a realization of Any physical system represents a realization of 
this algebra!this algebra!

The states of the system can be classified The states of the system can be classified 
according to the according to the representations of this representations of this 
algebraalgebra, independent of whether it is, independent of whether it is

an elementary particle (quarks) an elementary particle (quarks) 
or a composite system (atoms).or a composite system (atoms).



Constructing A RepresentationConstructing A Representation

One needs to find a complete set of commuting One needs to find a complete set of commuting 
observables.observables.
–– Start with the Start with the AbelianAbelian subalgbrasubalgbra PPµµ. . 
–– MassMass: : CasimirCasimir operator Poperator P22 = = PPµµPPµµ ==mm22

–– Little groupLittle group:: for a massive particle, we can for a massive particle, we can 
choose choose ppµµ

00 = (m, 0, 0, 0)   particle rest frame= (m, 0, 0, 0)   particle rest frame
•• The little group is the SO(3) rotationThe little group is the SO(3) rotation
•• The generators of the little group is the The generators of the little group is the 

angular momentum operator  angular momentum operator  JJii. . 
•• label states with different Jlabel states with different J22= = ss((s+1s+1) and ) and JJzz==

mmss : : s s = 0, 1/2, 1, 3/2, = 0, 1/2, 1, 3/2, …… thethe spinspin statesstates



PauliPauli--LubanskiLubanski VectorVector

Generalizing the angular momentum operator to Generalizing the angular momentum operator to 
arbitrary frame (arbitrary frame (PauliPauli--LubanskiLubanski),),

WWµµ = = –– εεµµααββγγJJααββPPγγ/2/2√√PP22

–– In the particle rest frameIn the particle rest frame
WWµµ = (0, J= (0, Jii)    and W)    and WµµPPµµ= 0  = 0  (true for any frame) (true for any frame) 

–– [W[Wµµ, , PPνν] = 0, ] = 0, 
WWµµ can be can be diagonalizeddiagonalized at the same time as at the same time as PPνν

–– [[WWµµ, , WWνν] = i ] = i εεµνµνααββWWααPPββ /2/2√√PP22

WW--generators form a group (little group) for generators form a group (little group) for 
a fixed pa fixed pµµ. . 



FrameFrame--Independent Spin Quantum Independent Spin Quantum 
NumberNumber

There must be a Casmir operator which defines There must be a Casmir operator which defines 
the spin as a framethe spin as a frame--independent property, just independent property, just 
like mass:like mass:

WW22 = W= WµµWWµµ

It has quantum numbers It has quantum numbers ––s(s+1) with s = 0, 1/2, 1, s(s+1) with s = 0, 1/2, 1, 
……

For a particle with nonFor a particle with non--zero momentum, Wzero momentum, Wµµ also also 
involves the involves the LorentzLorentz boost generators.boost generators.
–– In that sense, the content of the spin of a In that sense, the content of the spin of a 

particle seem different in the different frame?   particle seem different in the different frame?   



Magnetic Quantum NumberMagnetic Quantum Number

The magnetic quantum number mThe magnetic quantum number mss depends on the depends on the 
quantization axisquantization axis
–– Choose in the rest frame the 3Choose in the rest frame the 3--vector vector ssii..

–– This can be generalized to any momentumThis can be generalized to any momentum

where swhere sµµ is a polarization vector reduces to (0,sis a polarization vector reduces to (0,sii) ) 
in the rest frame.in the rest frame.

ssµµppµµ = 0    true in any frame.

sss smpmsmpJs 00
µµ =⋅

rr

sss smpmsmpWs µµ
µ

µ =−

= 0    true in any frame.



Choices of the Polarization VectorChoices of the Polarization Vector

Three most popular choices:Three most popular choices:
1.1. ssii = (0,0,1):    = (0,0,1):    S. WeinbergS. Weinberg
2.2. ssii arbitrary:   arbitrary:   BjorkenBjorken & & DrellDrell

In both cases, sIn both cases, sµµWWµµ involves boost operatorsinvolves boost operators
3.3. ssµµ = (|p|/m,p= (|p|/m,p00ppii/m|p|): /m|p|): Jacob and WickJacob and Wick

magnetic quantum number is called magnetic quantum number is called helicityhelicity: : λλ

the the helicityhelicity operator is independent of the boost operator is independent of the boost 
operators and is independent of the velocity operators and is independent of the velocity 
of the particleof the particle!

|p|
pJWsh r

rr
⋅

=−= µ
µ

!



HelicityHelicity (spin) Sum Rule(spin) Sum Rule

Consider a particle moving in the zConsider a particle moving in the z--direction with direction with 
helicityhelicity λλ

Or we can writeOr we can write

If the angular momentum operator If the angular momentum operator JJzz can be can be 
written as a sum of contributions written as a sum of contributions ΣΣii JJzizi , we have a , we have a 
helicityhelicity sum rulesum rule

λλ=λ smpsmpJ zzz

λλ=λ smpJsmp zzz

∑ ∑ λλ=λ=λ
i i

zzizi smpJsmp



Constructing Generators of Constructing Generators of PoincarePoincare
GroupGroup

Reps of the Reps of the PoincarePoincare groupgroup can be used to classify can be used to classify 
elementary particles (quarks, leptons, gauge elementary particles (quarks, leptons, gauge 
bosons, etc.)bosons, etc.)
Particle creation and annihilation Particle creation and annihilation operatorsoperators can be can be 
used to construct quantum fields forming used to construct quantum fields forming 
representations of the representations of the LorentzLorentz groupgroup (scalars, (scalars, 
spinorsspinors, vectors, , vectors, ectect.).)
Quantum fields facilitate constructions of Quantum fields facilitate constructions of 
lagragianlagragian densities and actions.densities and actions.
Continuous Continuous SpacetimeSpacetime symmetries of the actions symmetries of the actions 
lead to conserved charges by lead to conserved charges by Noether’sNoether’s theoremtheorem



A SpinA Spin--1/2 Free Particle1/2 Free Particle

LagragianLagragian densitydensity

Under infinitesimal translation xUnder infinitesimal translation xµµ––> > xxµµ ++ aaµµ

ψψ(x) (x) ––––>> (1(1––aaµµ∂∂µµ) ) ψψ(x) (x) 
The action S = The action S = ∫∫LdLd44x is invariant. The conserved x is invariant. The conserved 

current  is the energycurrent  is the energy--momentum  (stressmomentum  (stress--
energy) tensorenergy) tensor

–– The conserved charge is The conserved charge is 

( )ψ−∂ψ= miL

( )ψ∂γψ+ψ∂γψ=

−φ∂
φ∂∂

∂
=

νµνµ

µν
α

ν

αµ

µν

sr
ii

LgLT C

2
1

∫= µµ 03xTdP



Angular Momentum DensityAngular Momentum Density

Under Infinitesimal rotation xUnder Infinitesimal rotation xµµ ——> > ΛΛµµ
νν xxνν, the , the 

action is also invariant, action is also invariant, 

The symmetry leads to the following conserved The symmetry leads to the following conserved 
current (angular momentum density)current (angular momentum density)

The conserved charges areThe conserved charges are

( ) ( ) ( )
( )xji
xSx

ψ
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Gauge TheoriesGauge Theories

The The canonicalcanonical energyenergy--momentum and angularmomentum and angular--
momentum densities are not gaugemomentum densities are not gauge--invariant under invariant under 
gauge transformations.gauge transformations.

Although Although Noether’sNoether’s theorem guarantees the theorem guarantees the 
existence of a conserved charge, conserved existence of a conserved charge, conserved 
current is not unique, current is not unique, 

X is called a X is called a superpotentialsuperpotential..
One can use this freedom to obtain an energyOne can use this freedom to obtain an energy--
momentum tensor which is symmetric in their momentum tensor which is symmetric in their 
indices and gauge invariant (indices and gauge invariant (couple to gravitycouple to gravity).).

[ ]µν
ν

µµ ∂+= Xjj c

α
νµαµνµν ∂−= AFFgT 2

4
1



An “improved” EnergyAn “improved” Energy--Momentum TensorMomentum Tensor

Belinfante Improvement: make the energy-momentum 
tensor symmetric in the two indices. It can be shown

[ ]νβµµβνβµνβµν

βµν
β

µνµν

λ+λ+λ−=

∂+=

2
1X

XTT CB
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LL
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αν

αν
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φΣ
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∂
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λ∂=φ∂
φ∂∂

∂
−φ∂

φ∂∂
∂

Thus,

Cancel out the antisymmetric part

Adding a symmetric piece

Antisymmetric in beta and mu



Quantum Quantum ChromodynamicsChromodynamics

A fundamental theory of strong interactions A fundamental theory of strong interactions 
Building blocksBuilding blocks
–– SpinSpin--1/2 quarks 1/2 quarks ψψααifif

of three colors i=1,2,3 &of three colors i=1,2,3 &
of six different flavors: f=u,d,s,c,b,tof six different flavors: f=u,d,s,c,b,t

–– SpinSpin--1 1 masslessmassless gluons gluons AAµµaa

of eight colors a=1,…,8of eight colors a=1,…,8
An SU(3) gauge theoryAn SU(3) gauge theory

νµµννµµν

µν
µν

−∂−∂=

ψ/ψ−−ψ−∂/ψ=

cbabcsaaa

jfijifs
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aifqfif
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Improved EnergyImproved Energy--Momentum Tensor and Momentum Tensor and 
Angular Momentum Angular Momentum DenstyDensty of QCDof QCD

The QCD energyThe QCD energy--momentum tensor can be momentum tensor can be 
decomposed into quark and gluon contributionsdecomposed into quark and gluon contributions

Improved angular momentum density  

( ) ν
α

µαµνµν

νµµν

µνµνµν

−=

ψ∑ γψ=

+=

FFFg/T

,iDT

TTT

g

f
f

fq

gq

2

B

41

the total contribution 
is conserved, but not 
the individual part

Improved angular momentum density  
µανναµαµν −= xTxTM BBB



Angular momentum Operator of QCDAngular momentum Operator of QCD

Angular momentum is a spatial moment of the Angular momentum is a spatial moment of the 
momentum density Tmomentum density T0i0i

thus it depends on the stressthus it depends on the stress--energy tensorenergy tensor!!

Correspondingly the QCD angular momentum can Correspondingly the QCD angular momentum can 
be decomposed as

∫ ×= rdTrJ 3

be decomposed as

( )∫ ××=

∫ ψ×ψ∫ +ψΣψ=

+=
++

BErJ

Dir/J

JJJ

g

q

gq

2

However, the individual 
terms do not transform 
like the spatial components
of four-vectors!  



Nucleon Nucleon HelicityHelicity Sum RuleSum Rule

Consider a proton in its Consider a proton in its helicityhelicity eigenstateeigenstate. If it is . If it is 
moving along the zmoving along the z--directiondirection

Inserting the QCD expression for the angular Inserting the QCD expression for the angular 
momentum operator, we havemomentum operator, we have

ΔΣΔΣ is measurable through polarized deepis measurable through polarized deep--inelastic inelastic 
scattering.scattering.

But, how to get But, how to get JJqq and and JJgg??

pJp/ z=21

( ) ( )
( ) ( ) ( )µ+µ∆Σ=µ

µ+µ=

qq

gq

L/J

JJ/

2

21



LorentzLorentz TransformationTransformation

The individual contributions are invariant under a The individual contributions are invariant under a 
subclass of subclass of LorentzLorentz transformations transformations 
–– Boost along the zBoost along the z--directiondirection
–– Rotation around the zRotation around the z--directiondirection

Consider the matrix element Consider the matrix element 



LorentzLorentz InvarianceInvariance

From this, one has

Independent of the momentum p!
The sum rule is valid in the rest frame and infinite 
momentum frame
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