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Appetizer: Collider Physics & QCD

Collider experiments are a QCD laboratory . . .

• vast source of information about hadronic structure

• complementary to deep-inelastic scattering experiments

“gluons are the key players”

• challenge our understanding of strong interactions

• push theorists to perform more and more refined calculations

. . . a success story ever since



Some examples from Fermilab’s TeVatron

• largest hadron-hadron collider

• unpolarized p and p̄ beams

• c.m. energy up to
√

S =1.96TeV

• two major experiments:

DØ and CDF

• major discovery: top quark

• probes QCD hard interactions in

many different high-pT processes
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Fermilab’s TeVatron cont.
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• jet cross section in agreement

with expectations from pert.

QCD calculations

• similar for other processes:

heavy flavors, prompt photons,

electroweak bosons, . . .



Local example: BNL’s Relativistic Heavy Ion Collider

• 1st polarized pp collider

• also heavy-ion beams

• c.m. energy up to
√

S =500GeV

• two major experiments:

PHENIX and STAR

• probes spin dependence of strong

interactions in high-pT processes

main theme of my lectures



First results from RHIC

• RHIC physics program had a very successful start

• first results on unpolarized pion production
)

3 c⋅
-2

G
eV

⋅
 (

m
b

3
/d

p
σ3

E
*d

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
a)

PHENIX Data

KKP NLO

Kretzer NLO

 (
%

)
σ/σ∆

-40
-20

0
20
40 b)

0

2

4 c)

 (GeV/c)Tp
0 5 10 15

0

2

4 d)

(D
at

a-
Q

C
D

)/
Q

C
D

p

pion

θ

p
T

η=0neg. pos.

p

η η

10
-1

1

10

25 30 35 40 45 50 55 60 65

NLO pQCD calc.

Data 3.4<η<4.0
π0 mesons (〈η〉=3.8)

Eπ (GeV)

E
 d

3 σ/
d

p
3  (

µb
 c

3 /G
eV

2 )

KKP F.F. (η=3.8)
Kretzer F.F. (η=3.8)

Normalization
Uncertainty = 17%

〈pT〉 = 1.4 1.6 1.8 2.1 2.2 GeV/cPH ENIX



Questions to be addressed in the lectures

• How to compute a cross section in perturbative QCD?

keywords: parton densities; factorization; polarization; hard cross sections

• How reliable is a theoretical calculation?

keywords: scale dependence

• How to systematically improve the accuracy of a calculation?

keywords: next-to-leading order calculation, resummations

• What are we hoping to learn from RHIC spin experiments?

keywords: spin asymmetries; “global analysis”



Reminder: Parton Densities

Let us focus on longitudinally polarized nucleons:

w.r.t. the nucleon spin →, parton spins can be either aligned → or anti-aligned ←

-

∆f(x, µ) ≡ f→→ (x, µ)− f→← (x, µ)

f→→ (x, µ) [f→← (x, µ)]: # of partons with same [opposite] helicity as nucleon

carrying a momentum fraction x at a resolution scale µ

• parton f can be a quark, anti-quark, or gluon

• ∆f is a non-perturbative object ; you have to measure it! !

[also: ab initio non-perturbative QCD methods like lattice QCD→ Tom Blum’s lectures]



Parton Densities (cont.)

• once measured at scale µ0, the parton/spin content of the nucleon

at a resolution scale µ > µ0 is predicted by perturbative QCD:

DGLAP evolution eqs.:

µ
d

dµ

„

∆q(x, µ)

∆g(x, µ)

«

=

Z 1

x

dz

z

„

∆Pqq ∆Pqg

∆Pgq ∆Pgg

«

(z,αs(µ))

·
„

∆q
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«„

x

z
, µ

«

∆Pij: pert. calculable spin-dep. “parton j to parton i splitting functions”
Ahmed, Ross; Altarelli, Parisi; Mertig, van Neerven; Vogelsang

x

(1−x)

• parton densities are universal → foundation for predictive power of pQCD

both properties can be verified for the 1st time at



Parton Densities (cont.)

• current knowledge of ∆f exclusively from low energy lepton-nucleon experiments
→ Gerhard Mallot’s lectures

“resolving power” of DIS microscope

↔ virtuality Q2 of γ∗: R ' 1/
p

Q2
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Shopping list for RHIC

we have gained a lot of insight from more than 20 years of fixed target experiments

but we are still not out of the woods -

the jury is still out on some crucial questions:

• fixed target experiments can cover only very limited kinematical range

· haven’t yet really seen the log µ2 behavior of ∆f as predicted by DGLAP

· extrapolation uncertainties in
∫ 1

0
∆f(x, µ2)dx entering nucleon spin “sum rule”

• DIS is an electromagnetic probe

· no direct coupling to gluons → ∆g(x, µ2) completely/largely unknown

· DIS ∝ (∆q + ∆q̄) → separation of ∆u, ∆ū, ∆d, ∆d̄, and ∆s?

· cannot test universality of polarized pdfs from DIS alone



Perturbative QCD approach for hadron-hadron cross sections

starting point: • exploit universality of pdf’s

• invoke factorization Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.; . . .

→ way to separate long-distance (= non-perturbative)

from short-distance (= perturbative) phenomena

example: unpolarized high-pT single-inclusive hadron production
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c (z),

hard partonic cross section σ̂



Factorized cross sections (cont.)

upshot: differential cross section can be (very schematically) written as

dσ = fa × fb × dσ̂ ×Dh
c

However, this a bit too naive → several amendments are necessary:

• we observe only the hadron’s pT and η & can control the beam energies

· we cannot select the partons taking part in the hard scattering

· we don’t know which parton fragments into the hadron

→ have to sum over all possible partonic reactions: a b→ c d

e.g.

qg → gq gg → qq̄ gg → gg



Factorized cross sections (cont.)

• observed pT and η not uniquely linked to fixed momentum fractions xa, xb, and zc

→ ordinary products turn into convolutions: φ(x) =
∫ 1

x
dy
y ξ(y)ζ(x/y) ≡ ξ ⊗ ζ

→ major complication for extraction of pdf’s from measured cross sections!!

• separation of long- (fa,b, Dh
c ) and short-distance (σ̂) physics not unique

· controlled by arbitrary factorization scales µf and µ′f

[amount of “parton radiation”
x

(1−x)

included in fa,b, Dh
c ]

dσ =
∑

a,b,c

fa(xa, µf)⊗ fb(xb, µf)⊗ dσ̂ab(xa, xb, zc, µf , µ′f)⊗Dh
c (zc, µ

′
f)

· another arbitrary scale controlling the running of αs: renormalization scale µr

Questions: Is the whole picture completely arbitrary? How to choose these scales?



Factorized cross sections (cont.)

Question: Is the whole picture completely arbitrary? NO!

measured cross section must not depend on theoretical conventions

→ e.g. µf
dσ
dµf

= 0 (example of a “renormalization group eq.”)

dσ̂(xa, xb, zc, µf → µf + dµf , µ′f) dictates scale behavior of fa,b(xa,b, µf)

roughly

dσ̂(µf)

d ln µf
⊗ fa(xa, µf)⊗ fb(xb, µf)⊗Dh

c (zc, µ
′
f) +

σ̂(µf)⊗ dfa(xa, µf)

d ln µf
⊗ fb(xb, µf)⊗Dh

c (zc, µ
′
f) +

σ̂(µf)⊗ fa(xa, µf)⊗ dfb(xb, µf)

d ln µf
⊗Dh

c (zc, µ
′
f) = 0

result:
dfa(xa,µf)

d ln µf
have to obey DGLAP evolution!



Factorized cross sections (cont.)

There is catch . . . we work with a perturbative expansion in αs:

LO NLO NNLO

dσ̂ = dσ̂(0) + αs dσ̂(1) + α2
s dσ̂(2) + . . .

number of partons

complexity of calculation

µf cancellation only happens to all orders

LO : no cancellation whatsoever

NLO : cancellation starts to work

NNLO : better and better

. . .

→ motivation for higher order calculations 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Factorized cross sections (cont.)

Question: How to choose all these scales µf , µ′f , µr ?

for our factorized framework to work . . . QCD
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• we have to be in the perturbative domain: αs(µ)¿1

• multi-parton correlations have to be negligible

→ minimum requirement: at least one hard (= large) scale present, usually pT

jet

p

p

p
T

µf ' µ′f ' µr = O(pT )

if pT & 2GeV (no clear borderline!!)

· αs(µr)¿ 1 → pert. expansion should work

· ∝
(

Λ
pT

)n

→ hopefully small



Summary on “factorization” so far

• for the experimentally important class of high-pT processes we have

a well-defined procedure how to compute cross sections in pQCD

• calculations can be systematically improved by going to higher orders in αs

• desired information on hadronic structure (parton densities) sits inside

complicated convolutions, e.g., dσ =
∑

a,b fa ⊗ fb ⊗ dσ̂ab

• pQCD results are not god given numbers - they have uncertainties as well

most prominent ones:

· residual dependence on choice of scales due to truncation of series

µf,r dependence: important measure of the
reliability of pQCD results

· unknown size of higher terms in the series



Summary on “factorization” so far (II)

in terms of reliability colliders have a big advantage over fixed target experiments:

large c.m.s. energy
√

S → very large pT -range up to pmax
T =

√
S/2 accessible

· pQCD should be applicable plus not + + . . .

· bonus: for same pT , scale cancellation works better the higher
√

S

↑ ↑
× X

fixed target collider

typical ratios of cross sections

for two choices of µf

fixed target:

HERMES, COMPASS, E706

collider:

eRHIC, RHIC, CDF

should be close to 1

ratio of cross sections



Polarized ~p~p cross sections

next question: How does this “factorized picture” work out w/ polarization?

with longitudinally polarized protons you can perform four different experiments:

BANGp p or BANGp p or BANGp p or BANGp p

label proton spin states by their helicity

dσ(+,+) dσ(+,−) dσ(−,+) dσ(−,−)

so far we have discussed the unpolarized (helicity-averaged) cross section:

dσ ≡ 1

2
· 1
2

[dσ(+, +) + dσ(+,−) + dσ(−,+) + dσ(−,−)]

let’s have a closer look at what happens to dσ(+,+) at the partonic level . . .



Polarized ~p~p cross sections (cont.)

recall: in a proton with helicity + we can find a parton with

helicity +

f→→ ≡ f+
+

or

helicity −

f→← ≡ f+
−

→ hadronic dσ(+,+) decomposes into four partonic reactions:

BANGp p = f+
a,+ ⊗ f+

b,+⊗
a

b

+

+

+ f+
a,+ ⊗ f+

b,−⊗
a

b

+

−

+ f+
a,− ⊗ f+

b,+⊗
a

b

−

+

+ f+
a,− ⊗ f+

b,−⊗
a

b
−

−

= f+
a,+ ⊗ f+

b,+ ⊗ dσ̂(+,+) + f+
a,+ ⊗ f+

b,− ⊗ dσ̂(+,−)

+ f+
a,− ⊗ f+

b,+ ⊗ dσ̂(−,+) + f+
a,− ⊗ f+

b,− ⊗ dσ̂(−,−)

and similarly for dσ(+,−), dσ(−,+), and dσ(−,−)



Polarized ~p~p cross sections (cont.)

strong interactions invariant under parity:
mirror

parity flips helicity → f+
+ = f−− and f+

− = f−+

This simplifies everything considerably and one obtains

dσ ≡ 1

4
[dσ(+,+) + dσ(+,−) + dσ(−,+) + dσ(−,−)]

=
1

4

∑

a,b

(f+
a,+ + f+

a,−)⊗ (f+
b,+ + f+

b,−)

⊗ [dσ̂(+,+) + dσ̂(+,−) + dσ̂(−,+) + dσ̂(−,−)]

≡
∑

a,b

fa ⊗ fb ⊗ dσ̂ab

. . . our well-known factorized result for the unpolarized cross section



Polarized ~p~p cross sections (cont.)

But which combination of polarized cross sections contains the desired ∆fa,b?

This one . . .

d∆σ ≡ 1

4
[dσ(+,+)−dσ(+,−)−dσ(−,+) + dσ(−,−)]

=
1

4

∑

a,b

(f+
a,+−f+

a,−)⊗ (f+
b,+−f+

b,−)

⊗ [dσ̂(+,+)−dσ̂(+,−)−dσ̂(−,+) + dσ̂(−,−)]

≡
∑

a,b

∆fa ⊗∆fb ⊗ d∆σ̂ab

• defines the spin-dependent ~p~p cross section measurable at

• for parity-conserved QCD processes this simplifies further:

d∆σ =
1

2
[dσ(+,+)−dσ(+,−)] (hadron− level)

d∆σ̂ =
1

2
[dσ̂(+,+)−dσ̂(+,−)] (parton− level)



Polarized ~p~p cross sections (cont.)

upshot: to compute spin-dependent cross sections we have a similar

factorized “picture” as discussed earlier

one only has to sprinkle some ∆′s where appropriate

example: polarized high-pT single-inclusive pion production ~p(Pa)~p(Pb)→ π(P π)X

long-distance
from exp.; µ-dep.: dσ/dµ = 0 (pQCD)

↓ ↓ ↓
d∆σ~p~p→πX

dpTdη
=

∑

abc

∫

dxa dxb dzc ∆fa(xa, µf)∆fb(xb, µf) Dπ
c (zc, µ

′
f)

× d∆σ̂ab→cX′

dpTdη
(xaPa, xbPb, P

π/zc, µf , µ′f , µr) +O(
λ

pT
)n

↑ ↑
short-distance power corrections

calculable in pQCD: power series in αs neglected



Polarized ~p~p cross sections (cont.)

some final remarks on this section:

• measurable dσ(±,±) all positive (# events for certain polarization pattern)

· unpolarized cross section dσ = 1
2 [dσ(+,+)+dσ(+,−)] always positive

· sign of polarized cross section d∆σ = 1
2 [dσ(+,+)−dσ(+,−)] not fixed

· immediately gives “positivity bound”: → Jacques Soffer’s lecture

|d∆σ| ≤ dσ

• we will frequently encounter the experimentally relevant spin asymmetry:

ALL ≡ d∆σ
dσ

· note: it’s an urban legend that NLO pQCD corrections cancel in ALL!!!



Cross sections relevant for RHIC spin

recall major goal of RHIC spin program with longitudinal polarization:

pin down all aspects of helicity pdfs, in particular poorly known ∆g

→ study processes with a dominant gluon contribution in LO:

jets/hadrons

prompt photons heavy quarks

reaction LO subprocesses partons probed x-range

pp → jets X qq̄, qq, qg, gg → jet X ∆q, ∆g x & 0.03

pp → πX qq̄, qq, qg, gg → πX ∆q, ∆g x & 0.03

pp → γX qg → qγ, qq̄ → gγ ∆g x & 0.03

pp → QQ̄X gg → QQ̄, qq̄ → QQ̄ ∆g x & 0.01

pp → W±X qq̄′ → W± ∆u, ∆ū, ∆d, ∆d̄ x & 0.06



Cross sections: Born approximation

at O(α2
s) (LO = “Born” = “tree-level”) one has:

eight relevant QCD 2→ 2 parton-parton scattering processes ab→ cd

qq′ → qq′

qq̄ → q′q̄′

qq → qq

qq̄ → qq̄

qq̄ → gg

gg → qq̄

qg → qg

gg → gg

unpol.: boils down to four different processes qq′ → qq′, qq → qq, qq̄ → gg, gg → gg

all other processes related by crossing symmetry: ab→ cd ↔ ad̄→ cb̄

polarized: cannot use crossing, e.g., ~q~̄q → gg =/ ~q~g → qg



Cross sections (cont.)

computation of LO cross sections is pretty straightforward:

a(pa, λa)+b(pb, λb)→ c(pc)+d(pd)
↑ ↑

helicities λa,b = ±1

dσ̂(λa, λb)

+−
a

b

c

d
+−

• the helicity-dependent partonic QCD cross sections can be written as

dσ̂(λa, λb) = dσ̂ + λa λb d∆σ̂

→ no single-spin asymmetries for QCD processes at Born-level

• dependence of dσ̂(λa, λb) on kinematics conveniently expressed in terms of

s ≡ (pa + pb)
2

t ≡ (pa − pc)
2
= −√s pT e

−η

u ≡ (pa − pd)
2
= −√s pT e

η

where η = − ln tan(Θ/2)
d

c

a
b

p
T

Θ

partonic c.m.s



Cross sections (cont.)

example: q(pa, λa) q̄(pb, λb)→ g(pc) g(pd)

1. step: write down all relevant Feynman diagrams

M1 = M2 = M3 =

2. step: get amplitudes Mi by applying Feynman rules for vertices, propagators,

and external lines

3. step: compute total amplitude squared MM ∗ = |M |2 = |M1 + M2 + M3|2

4. step: attach flux factor 1/2s for incoming partons, a phase space factor

d3pi
(2π)3(2Ei)

for each produced parton, and four-momentum conservation

(2π)4δ(4)(pa + pb − pc − pd) to obtain

dσ̂(s, t, u, λa, λb) =
1

2s
|M |2(s, t, u, λa, λb)

d3pc

(2π)3(2Ec)

d3pd

(2π)3(2Ed)
(2π)

4
δ

(4)
(pa+pb−pc−pd)



Cross sections (cont.)

after some algebra and “Diracology” one obtains the full list of LO QCD processes:

process |M |2(+, +)/g4
s |M |2(+,−)/g4

s

qq′ → qq′ 8s2/(9t2) 8u2/(9t2)

qq̄ → q′q̄′ 0 8(t2 + u2)/(9s2)

qq → qq 8(s2/t2 + s2/u2 − 2s2/(3tu))/9 8(u2/t2 + t2/u2)/9

qq̄ → qq̄ 8s2/(9t2) 8(u2/t2 + t2/s2 + u2/s2 − 2u2/(3st))/9

qq̄ → gg 0 64(t2 + u2)/(27ut)− 16(t2 + u2)/(3s2)

gg → qq̄ 0 (u2 + t2)/(3ut)− 3(t2 + u2)/(4s2)

qg → qg 2s2/t2 − 8s2/(9us) 2u2/t2 − 8u2/(9us)

gg → gg 9(2s2/(ut)− su/t2 − st/u2)/2 9(6− 2s2/(ut)− 2u/t2 − st/u2 − 2ut/s2)/2

and similar for qg → qγ (prompt photons), qq̄ → ll̄ (Drell-Yan), gg, qq̄ → QQ̄ (heavy flavors), . . .



Cross sections (cont.)

some observations:

• gg → gg dominates at Θ = 90◦ (η = 0; t = u = −s/2) followed by qg → qg

• most processes have âLL ≡ d∆σ̂/dσ̂ > 0, qq̄ annihilation has -1

gg → gg

qg → qg

qq → qq

qq
–
 → qq

–

qq
–
 → gg ,

gg → qq
–

cosθ

aLL
∧

-1

0

1

-1 -0.5 0 0.5 1



Cross sections (cont.)

LO pQCD results/predictions

• are useful for quick & dirty estimates of qualitative features of a process

• suffer from large theoretical uncertainties

example:

~p(Pa)~p(Pb)→ π(P π)X @ high-pT

band: variation pT/2 ≤ µf ≤ 2pT

pT [GeV]

d∆σ / dpT  [pb / GeV]

1

10

10 2

10 3

10 4

10 5

10 6

0 5 10 15

upshot: NLO corrections are in general a must if it comes to numbers

• expect much reduced dependence on unphysical scales µf,r

• NLO corrections are often sizable

• may effect the sensitivity to ∆g and its extraction from data



NLO corrections in a nutshell

Going beyond the LO is in every respect a major enterprise . . .

LO NLO NNLO

dσ̂ = dσ̂(0) + αs dσ̂(1) + α2
s dσ̂(2) + . . .

number of partons

complexity of calculation

• NLO techniques are well established and most cross sections are available

• NNLO still far from being standard, a lot of progress though

recent example: the NNLO DGLAP evolution kernels Pij Moch, Vermaseren, Vogt

→ NNLO = pushing computer algebra programs to their limits

# diagrams # integrals

LO 18 a few

NLO 350 some more

NNLO 9607 ∼ 105



NLO corrections in a nutshell (cont.)

at O(α3
s) (NLO) one has to consider:

• one-loop (virtual) corrections to all LO 2→ 2 processes

“box” “vertex” “selfenergy”

• all conceivable 2→ 3 parton-parton scattering processes

this includes additional gluon emission to existing LO processes

qq′ → qq′g, qq̄ → ggg, gg → ggg, etc.

as well as genuine NLO processes not possible at O(α2
s)

qg → qq′q̄′, qg → qqq̄, etc.



NLO corrections in a nutshell (cont.)

complication: all diagrams have infinities in four dimensions

three types of singularities will appear:

• ultraviolet (UV) singularities:

due to the integration of the unobserved loop-momentum up to infinity

∫∞
0

d4q
q

• infrared (UV) singularities:

emission of soft gluons (Eg → 0) 1
pq·pg

= [EqEg(1− cos Θqg)]
−1

• collinear or mass singularities:

collinear emission (Θqg → 0) 1
pq·pg

= [EqEg(1− cos Θqg)]
−1

(not possible for massive quarks)



NLO corrections in a nutshell (cont.)

all singularities have to be tamed before the calculation can make any sense

standard procedure: dimensional regularization ‘t Hooft, Veltman

• continue space-time to n = 4− 2ε dimensions

• all infinities manifest themselves as 1/εk

• free of artifical cut-offs; works systematically to all orders

• 1/εk have to be removed before taking the physical limit ε→ 0 in the end

price to pay:

• kinematics/phase space/integrals in n dimensions much more complex

• polarization requires special attention: spin projectors genuine four-dimensional

consistent procedure known → kinematics even more complex

Breitenlohner, Maison, ‘t Hooft, Veltman



NLO corrections in a nutshell (cont.)

a closer look at virtual corrections:

at O(α3
s = g6

s) only the interference of 1-loop and Born amplitudes contributes:

{ }

⊗

• kinematics described by s, t, u like for a 2→ 2 Born process

• IR+UV divergencies show up as 1/ε and 1/ε2

• main technical challenge: computation of loop-integrals

e.g.: ∼
∫

dnq qµ[qν[qρ]]
q2(q+pa)2(q+pa−pc)2(q+pa−pc−pd)

2

can be reduced to large set of n-dim. scalar integrals Passarino, Veltman

renormalization: UV poles “used” to define physical coupling gs → UV finite



Interlude: “philosophy of renormalization”

idea of renormalization:

the quantities we start off from are not physical, e.g., the bare strong coupling gbare
s

“QCD is renormalizable” = UV poles can be subtracted (at a scale µr!) order by order

this procedure defines, e.g., the physical coupling: gphys
s = Zren gbare

s



NLO corrections in a nutshell (cont.)

a closer look at 2→ 3 corrections: here is a list of some typical diagrams

different flavors identical flavors
q =/ q′ q = q′

qq′ → qq′g

qq̄ → q′q̄′g

qg → qq′q̄′

qq̄ → ggg

qg → qgg

gg → ggg

gg → qq̄g



NLO corrections in a nutshell (cont.)

main technical challenge here:

• integration over phase space d(n−1)pi

(2π)(n−1)(2Ei)
of all unobserved partons

example: calculation of single-inclusive pion cross section:

typical 2→ 3 process: gg → q (q̄g)

↗ ↖
fragments: q → πX integrated out

“Monte-Carlo approach”:

idea: separate off divergent regions of p.s.

integrate “rest” in 4 dimensions

X suitable for complicated observables

X exp. cuts easy to build in

× delicate numerical cancellations

× slow → not very suitable for fitting pdfs collinear
so

ft

phase space

δ

δ

coll

soft



NLO corrections in a nutshell (cont.)

“largely analytical approach”:

idea: do entire phase space integration analytically in n dimensions

[p.s. best parameterized by two angles θ1,2 in rest frame of the two unobserved partons]

d∆σ̂2→3 ∼ . . .

∫

dθ1dθ2 sin1−2ε θ1 sin−2ε θ2 ∆ |M2→3|2

extensive partial fractioning boils everything down to

I(k,l) =

∫
dθ1 sin1−2ε θ1 dθ2 sin−2ε θ2

(1 + cos θ1)k(1 + A cos θ1 + B sin θ1 cos θ2)l

which can be done analytically → IR+collinear poles

strength/weakness of method:

X straightforward, fast numerics

X well suited for pdf analyses

× usually limited to single-incl. x-secs

× exp. cuts not easy to build in



NLO corrections in a nutshell (cont.)

final step: cancellation of remaining singularities then ε→0

• UV singularities have already been taken care of by renormalizing αs

• IR singularities cancel in sum of one-loop and 2→ 3 contributions

[essence of Kinoshita, Lee, Nauenberg & Bloch, Nordsieck theorems for “IR-safe” observables]

• remaining collinear singularities have to be removed by factorization

[factorization = renormalization of bare parton densities and fragmentation fcts.]

e.g.: → ∼ 1
ε

∫
dx∆Pqq(x)∆σ̂qq→qq

introduce two arbitrary factorization scales µf and µ′f

initial-/final-state singularities

↙ ↘
∆f(x, µf) Dπ

f (z, µ′f)



NLO corrections in a nutshell (cont.)

good news: impressive progress recently – list of results relevant for RHIC spin:

evol. kernels ∆Pij NLO Mertig, van Neerven; Vogelsang

hadrons ~p~p→ H + X NLO • De Florian; Jäger, Schäfer, MS, Vogelsang

p~p→ ~H + X NLO Jäger et al. (soon)

jets ~p~p→ jet(s) + X NLO • De Florian et al.; Jäger,MS, Vogelsang

prompt γ ~p~p→ γ + X NLO • Gordon, Vogelsang; Contogouris et al.

~p~p→ γγ + X NLO Coriano, Gordon

p~p→ ~γ + X NLO Vogelsang

γ + jet ~p~p→ γ + jet + X NLO Gordon

γ + charm ~p~p→ γ + c + X NLO Berger et al. (mc = 0)

heavy quarks ~p~p→ QQ̄X NLO • Bojak, MS

Drell-Yan ~p~p→ (γ∗)X NLO Weber; Gehrmann;

NNLO Smith et al.

vector bosons ~p~p→ (Z0, W±)X NLO Weber; Gehrmann

p~p→ (Z0, W±)X NLO • Weber; Gehrmann

l

details/results coming up



Processes one-by-one

• high-pT hadrons:
NLO: Jäger, MS, Schäfer, Vogelsang; de Florian

recall: 1st unpolarized measurements at RHIC agree well with pQCD
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• Dπ(z) set of KKP favored by data
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→ exciting prospects for similar measurement with polarization



Processes one-by-one (cont.)

a closer look at pQCD results for π0-production at
√

S = 200GeV, |η| ≤ 0.38:

0

1

2

0 5 10 15

dσNLO/dσLO

d∆σNLO/d∆σLO

pT [GeV]

d(∆)σ / dpT  [pb / GeV]
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polarized

NLO

LO
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NLO

pT [GeV]

d∆σ / dpT  [pb / GeV]
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µf dependence much reduced in NLO

NLO corrections different for d∆σ and dσ
→ do not cancel in ALL = d∆σ/dσ

[figs. taken from Jäger et al.]



Processes one-by-one (cont.)

Is the spin asymmetry ALL sensitive to unknown gluon polarization ∆g ?

L = 3 / pb

P = 0.4

∆g=g input

GRSV - std

∆g=0 input

∆g=-g input

pT [GeV]

ALLAπ

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15

estimate of statistical precision:

δALL ' 1
P2

1
(Ldσbin)1/2

P : beam polarization; L: integrated luminosity

predictions for very different ∆g
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1x

all compatible with current DIS data

note:

(1) for pT ≤ 10 GeV: ALL > 0

(2) only 3 pb−1 assumed
[design: 320 pb−1]



Processes one-by-one (cont.)

recent exciting development: first results on ALL by PH ENIX

input

∆g = g

∆g = -g

GRSV

∆g = 0

PHENIX

p⊥ [GeV]

ALLAπ

NLO

-0.1

-0.05

0

0.05

0.1

0 5 10 15

trend for ALL < 0 at small pT contrary to expectations



Processes one-by-one (cont.)

How can that be?

gg → gg

qg → qg

qq → qq

qq
–
 → qq

–

qq
–
 → gg ,

gg → qq
–

cosθ

aLL
∧

-1

0

1

-1 -0.5 0 0.5 1

PHENIX measures at central rapidities

Naive analysis:

need process with âLL < 0

recall partonic asymmetries

gg → gg âLL > 0

gg → qq̄ âLL = −1

gq → gq âLL > 0

conclude:

gg → qq̄ resp. for neg. Aπ
LL

NO!
∆σ̂gg→gg ' 160 ∆σ̂gg→qq̄

(η ' 0)



Processes one-by-one (cont.)

So - can Aπ
LL be negative? Jäger, Kretzer, MS, Vogelsang
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pT [GeV]
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subprocess contributions:

fairly independently on what we

assume about ∆g we find:

gg processes:

dominate for pT . 10GeV

qg processes:

take over for pT & 10 GeV

qq processes:

always small unless pT very large



Processes one-by-one (cont.)

not yet taken into account:

both partons are not probed at the same momentum fraction x

→ even for âLL > 0 we can have ALL < 0 if ∆fa(xa)∆fb(xb) < 0

we can even analytically derive a lower bound on ALL:

d∆σ

dpT
=
∑

a,b,c

fa(xa)⊗ fb(xb)⊗
d∆σ̂ab(xa, xb, zc)

dpT
⊗Dh

c (zc)

take x2
T ≡ 4p2

T/S moments
R

dx2
T (x2

T )N−1 . . .→ convolutions turn into products

∆σπ(N) =
(
∆gN+1

)2AN + 2∆gN+1 BN + CN

l l l
gg qg qq

this is a parabola in ∆gN → minimize!



Processes one-by-one (cont.)

minimization yields: ∆σπ(N)
∣
∣
∣
min

= −(BN)
2

AN + CN

→ negative, but tiny lower bound Aπ
LL

∣
∣
min
' O(−10−3) ≫ indications from data

as expected:

the resulting ∆g has a node

i.e., ∆g(xa)∆g(xb) < 0

x∆g

x

µ = 2.5 GeV

GRSV
“standard“
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10
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1

but still way too early to cry!

• “problem” only in lowest pT bin where uncertainties are large

• pT perhaps too small to apply pQCD [it works for dσ/dpT though!]

we need much more data to call this a new “spin surprise”



Processes one-by-one (cont.)

another lesson: around mid-rapidity and for pT . 10GeV it is difficult

to even pin down the sign of ∆g

reason: gg dominance and η ' 0 ↔ xa ' xb

What about an Aπ
LL measurement at large rapidities by ?

idea: |η| À 0: partonic system boosted

→ probes highly asymmetric xa, xb

expect: dominance of qg sets in

→ sign/size of Aπ
LL tied to sign/size of ∆g

problem: Aπ
LL tiny

√
S = 200 GeV, η = 3.3

max

-max

GRSV-std

〈pT 〉 = 2.3 2.8 3.0 3.4 GeV



Processes one-by-one (cont.)

with more luminosity PH ENIX can go to higher pT at 〈η〉 ' 0 plus Aπ±
LL vs. Aπ0

LL

π− u
d π0 π+

u
d

NLO
∆g=g input

GRSV - std

∆g=-g input

pT [GeV]

ALLAπ−

⇓

⇓
⇑

0
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0.06
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L = 3 / pb

P = 0.4

∆g=g input

GRSV - std

∆g=0 input

∆g=-g input

pT [GeV]
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0
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0.06

0.08

0.1

0 5 10 15

NLO

∆g=g input

GRSV - std

∆g=-g input

pT [GeV]

ALLAπ+

⇑

⇓
⇑

0
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0.06

0.08
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idea: qg starts to dominate for pT & 5 GeV and Dπ+

u > Dπ0

u > Dπ−
u , Dπ+

g = Dπ−
g

expect: sensitivity to sign of ∆g, e.g., positive ∆g: Aπ+

LL>Aπ0

LL>Aπ−
LL



Processes one-by-one (cont.)

• high-pT jets:
η , p

θ

jet jet

T

δ

jet, φ
bP

jet

Pa

NLO: Jäger, MS, Vogelsang; de Florian, Frixione, Signer, Vogelsang

jet = bunch of particles in a small pencil-like cone; all final-state sing. cancel

jet production proceeds through the same partonic subprocesses as π-production:

d∆σab / d∆σ

jet

π0

pTpπ [GeV]

pTpjet [GeV]

qg

gg

qq
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π’s have roughly 〈z〉 ' 0.5:

→ π with pT ' jet with 2pT

comparison to hadrons:

X much higher rates

X no uncertainties from D(z)

× dependence on precise definition of jet



Processes one-by-one (cont.)

pQCD results for jet-production at
√

S = 200GeV, Rcone = 0.4 (SCA), |η| ≤ 1:
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µf dependence much reduced in NLO

theoretical uncertainties even smaller
than for hadrons

[figs. taken from Jäger et al.]



Processes one-by-one (cont.)

not surprisingly, Ajet
LL is sensitive to gluon polarization ∆g: [fig. taken from Jäger, MS, Vogelsang]

√
S = 200 GeV, Rcone = 0.4 (SCA), 0 ≤ η ≤ 1
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again: at small pT no sensitivity to sign of ∆g



Processes one-by-one (cont.)

summary on inclusive jets and hadrons:

• offer excellent short-term prospects for a first determination of ∆g

caveat: for sign of ∆g one needs measurements up to pT ' 10÷ 15GeV

• very important: measurement of absolute cross sections not “only” of ALL

[even unpolarized pp cross sections never before measured at
√

S = 200÷ 500 GeV]

• unpolarized “benchmark x-secs” agree very well with pQCD so far

[even down to unexpectedly small pT ]

• first exciting results from PH ENIX on Aπ
LL at small pT

if large & negative ALL persists: what is the explanation?

important to collect more data soon



Processes one-by-one (cont.)

long-term goals:

need much higher luminosities, beam polarizations, and/or
√

S = 500 GeV

• production of prompt photons pp→ γX:

a supposedly clean signature for ∆g

• production of heavy flavors pp→ cc̄X, pp→ bb̄X:

extend ∆g measurements to smaller x

• study of W± boson production:

a very clean tool to gather further information on ∆q and ∆q̄ separately

• look for weird things beyond the Standard Model:

this is always an issue at colliders . . .



Processes one-by-one (cont.)

• high-pT prompt photons (plus jets):
NLO: Gordon, Vogelsang; Contogouris et al.; Frixione, Vogelsang

idea: a “classical”, supposedly clean signature for ∆g

· only two rather than eight LO QCD processes: qg → qγ (dominant) and qq̄ → gγ

· ∆g does not enter squared → sign of ∆g not an issue here

on the downside:

· photons are much less abundant → need a lot of luminosity

· prompt photon data abandoned in all unpolarized pdf analyses CTEQ, MRST

reason: some trouble with fixed target data; high pT jets give better constraints

positive aspect: problems have pushed theoretical efforts to go beyond NLO

[soft gluon/threshold (and kT ) resummations]Laenen et al.; Catani et al.; Li; Kidonakis Owens; . . .



Processes one-by-one (cont.)

Aγ
LL(pT ) shows the expected sensitivity to ∆g:

√s = 200 GeV
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R = 0.4, η   < 0.35  0 γ R = 0.4, η   < 0.35  0 γ

GRSV MAXg

GRSV STD

GS-C

0.3

0.2

A
   

=
∆σ

 ⁄ 
σ

L
L

0.1

0.0

10 20 30 40 50 20 30 40 50

p   (GeV/c)Tγ p   (GeV/c)Tγ
[fig. taken from Frixione, Vogelsang]

not shown: reduced scale dependence in NLO X
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Processes one-by-one (cont.)

• heavy flavor production:
NLO: Bojak, MS

idea: sensitivity to ∆g through dominance of gg → QQ̄ (small)

· only one other LO process: qq̄ → QQ̄

· mQ allows pert. approach even without high pT ; slightly smaller x values accessible

main complication: matching of theory and experiment

· c, b only seen indirectly at RHIC via their decay leptons; exp. c/b separation

recent development:

· long-standing problem with unpolarized

b-cross section at TeVatron gradually

disappears Cacciari et al.



Processes one-by-one (cont.)

•W± boson production:
NLO: Weber; Kamal; Gehrmann; Smith et al.

idea: weak interactions maximally parity violating

W± selects parton helicity → AL sufficient

in LO one has e.g. Leader, Sridhar; Bourrely, Soffer

AW+

L (y) =
−∆u(xa)d̄(xb) + ∆d̄(xa)u(xb)

u(xa)d̄(xb) + d̄(xa)u(xb)

where xa,b =
MW√

S
e±y

y large &



pos. (xa > xb)

neg. (xa < xb)
: AW+

L '
 −∆u(xa)/u(xa)

∆d̄(xa)/d̄(xa)

AW−
L (y): u↔d → probes ∆d/d and ∆ū/ū

ideal tool for a separation of ∆u, ∆d, ∆ū, and ∆d̄



Processes one-by-one (cont.)

expected sensitivity on ∆q/q from AW±
L (y): [fig. taken from Bunce et al.]

Q = M W
22

_
A  (W  )L

A  (W  )L
+

∆u/u

∆u/u
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0.5
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−1.0
10−110−2

GS95LO(A)
BS(∆g=0)

∆d/d

∆d/d

RHIC pp √s = 500 GeV
 ∫L dt = 800 pb  −1

x

∆
q
/q

for RHIC kinematics:

∆u, ∆d probed at x & 0.2

∆ū, ∆d̄ probed at 0.045 . x . 0.12

complication: detector issues

have to observe W± via decay but

neither PHENIX nor STAR are hermetic

→ missing ET cannot be reconstructed
→ get y(W ) only from charged lepton

good news:

full NLO lepton-level MC available
Nadolsky, Yuan



QCD analysis of upcoming RHIC data

How to extract the desired information on ∆f from data?

executive summary: extraction of pdfs from data is art, science, and voodoo

highly non-trivial exercise:

• recall: pdfs reside inside complicated convolutions

d∆σ =
∑

a,b

∫

∆fa ⊗∆fb ⊗ d∆σ̂ab

→ not directly measurable; no 1:1 relation between data and ∆f

• not a priori clear which and where processes can be described by pQCD

• all processes should be analyzed in NLO:

· recall: less dependent on unphysical scales µr and µf [= theor. uncertainty]

· NLO corrections are often sizable

· NLO closer to experiment [jet definition, cuts, . . . ]



QCD analysis (cont.)

experience from corresponding fits to unpolarized data: CTEQ, MRST, GRV, . . .

• experience for about 20yrs. now

• inexhaustible amount of data

technical complications:

• functional form of pdfs not known

typical ansatz for each flavor:

f(x, µ0) = Nxα(1− x)β

→ multi-dim. fitting problem

• large number of data required to pin

down all aspects of pdfs
[e.g. in CTEQ-5: 15 sets from 11 exp.→ 1295 pts.]
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QCD analysis (cont.)

rough outline of fitting procedure (χ2 minimization):

model ansatz for pdfs

  with initial set of parameters

evolve pdfs to relevant scale

with DGLAP

calculate observable
χand ad

ju
st

 p
ar

am
et

er
s

al
l d

at
a 

po
in

ts

2

minimum?χ2
no

yes



QCD analysis (cont.)

main technical challenge of a NLO global analysis:

• NLO expressions for most processes are fairly complex and lengthy

• d∆σNLO = K · d∆σLO would be nice but is a bad approximation

→ computing time required for a multi-dim. fit becomes excessive

possible way out: Kosower; Vogelsang, MS

idea: get rid of convolution integrals in d∆σ by taking Mellin N moments

∫ 1

0

dx xN−1

[∫ 1

x

dy

y
ξ(y)ζ(x/y)

]

=

∫ 1

0

dx xN−1

[∫ 1

0

dy

∫ 1

0

dz ξ(y)ζ(z)δ(x− yz)

]

=

∫ 1

0

dy yN−1ξ(y)

∫ 1

0

dz zN−1ζ(z)

= ξNζN simple product



QCD analysis (cont.)

• apply to convolutions in cross section formula:

d∆σ '
∑

a,b

∫

dxa dxb ∆fa(xa)⊗∆fb(xb)⊗ d∆σ̂ab(xa, xb)

↑ ↑
Mellin inverse:

∫

Cn dnx−n
a ∆fn

a

∫

Cm dmx−m
b ∆fm

b

=
∑

a,b

∫

Cn
dn

∫

Cm
dm ∆fn

a ∆fm
b

[ ∫

dxa dxb x−n
a x−m

b ∆σ̂ab(xa, xb)
︸ ︷︷ ︸

≡ ∆σ̃n,m
ab

]

• pre-calculate time-consuming ∆σ̃n,m
ab on a suitable n×m grid for all

subprocesses and data pts. once and forever before the fit

• fast numerical inverse Mellin transformation
∫

Cn dn
∫

Cm dm on n×m grids in complex n, m plane

�� � �

�� � �

� �

�� � �

�
�� 	



QCD analysis (cont.)

sample analysis of fictitious prompt photon “data”: Vogelsang, MS

aim: determine x region where ∆g predominantly probed by data; gain w.r.t. DIS

NLO “global” QCD fit

of DIS + γ data

⇓
1σ-bands for Aγ

LL and ∆g

pT [GeV]

ALLAγ

NLO

(a)

∆g1(µ0) = 0.8 (DIS only)

∆g1(µ0) = -0.8 (DIS only)

0

0.1

0.2

10 15 20 25 30 35

prompt-γ data

200 GeV

0.05 0.1 0.5x

(b)

µF = 10 GeV

NLO

(∆
g 

- 
∆g

G
R

SV
) 

⁄ ∆
g G

R
SV

∆g1(µ0) = 0.8 (DIS only)

∆g1(µ0) = -0.8 (DIS only)

-2

-1

0

1

10
-1

result: • strong constraint on ∆g around x ' 0.15

• Mellin technique very fast and efficient; applicable to all relevant processes

ideal tool to analyze upcoming RHIC data



Addendum: transverse polarization

Let’s turn spin by 90◦ – does it matter? Yes!
boosts and rotations do not commute → completely new object

transversity density δq(x,Q2): (sometimes also called h1)

features:

• “as partonic as” q and ∆q: 1h = - Ralston, Soper; Artru, Mekhfi; Jaffe, Ji

• reveals chiral-odd nature if described in helicity-basis

|↑〉 = 1√
2
(|+〉+ |−〉) and |↓〉 = 1√

2
(|+〉 − |−〉)

→ δq is a helicity-flip density (off-diagonal)

→ spin-1 δg× not possible for spin 1/2 targets (protons, . . . ) Jaffe, Ji; Artru, Mekhfi; Ji

[would require helicity flip by 2 units]



Addendum: transversity (cont.)

more features of transversity:

• simple DGLAP evolution equations

µ
dδq(x, µ)

dµ
=

∫ 1

x

dz

z
δPqq(z, αs(µ))δq(x/z, µ)

splitting kernels δPqq known up to NLO Vogelsang; Kumano, Miyama; Koike et al.

peculiar feature of evolution:

all moments δq(µ) ≡
∫ 1

0
xn−1δq(x, µ)dx decrease → “evolves away”

• so far unmeasured; helpful constraint: Soffer inequality Soffer; Sivers

∣
∣δq(x, µ2)

∣
∣ ≤ 1

2

[
q(x, µ2) + ∆q(x, µ2)

]

↑ ↑ ↑
unknown known (more or less)

more restrictive than |δq| ≤ q

δq(x)

q(x)−q(x) ∆q(x)

1q(x)
2

−1q(x)
2



Addendum: transversity (cont.)

measuring transversity:

difficult! all fundamental interactions preserve chirality

e.g.: ΨγµT aΨ = LγµT aL + RγµT aR where R,L = 1
2[1 + γ5]Ψ

→ not accessible, e.g., in deep-inelastic scattering

two ways to explore transversity δq at RHIC:

chirality has to be flipped twice to access δq

↙ ↘
double-spin single-spin

asymmetries

ATT AN

here → Jianwei Qiu’s lectures



Addendum: transversity (cont.)

AN in brief:

• exciting observable, goes back to the early days of spin:

A(p,~sT ) + B(p′)→ C(l) + X with C ‘=’ high-pT π, γ, . . .

measure : AN =
∆Nσ

σ
≡ σ↑ − σ↓

σ↑ + σ↓

• leading-twist pQCD: AN = 0 but large AN found experimentally ever since

→ explanation requires new non-perturbative objects

for the 1st time also seen at
√

S = 200 GeV by

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Collins
Sivers
Initial state twist-3
Final state twist-3

Total energy (3.3<η<4.2)
π0 mesons (3.3<η<4.1)

xF
A

N

〈pT〉 = 1.0 1.1 1.3 1.5 1.8 2.1 2.4 GeV/c

Assuming
ACNI = 0.013N



Addendum: transversity (cont.)

ATT in brief:

• ATT ≡ dσ(↑↑)− dσ(↑↓)
dσ(↑↑) + dσ(↑↓) is a much more conventional quantity

• helicity-flip requirement

� �

� �

fulfilled for qq̄ annihilation

and for some interference diagrams, not for stuff like
∣
∣
∣

∣
∣
∣

2

• standard pQCD framework applies

• expect: ATT small due to absence of g↑g↑ and q↑g↑ processes

→ Drell-Yan process

� �

� �

of particular interest: no gluon contribution at LO



Addendum: transversity (cont.)

Drell-Yan process:

� �

� �

Ralston, Soper; Cortes, Pire, Ralston; Artru, Mekhfi; Ji; Jaffe, Ji

• only candidate process w/o gluons in LO

• relies on the presence of sea-quark transversity δq̄

no gluon density δg → no g → qq̄ splitting → few sea-quarks?

• experimental “problem”: limited acceptance for µ± detection

PH ENIX: |1.2 ≤ yµ ≤ 2.4|

estimate of upper bound for ATT in NLO QCD:
Martin, Schäfer, MS, Vogelsang

· saturate Soffer bound for δq at µ0 ' 0.6 GeV

· includes detector acceptance
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Addendum: transversity (cont.)

single-inclusive high-pT jet and prompt photon production:
Hidaka et al.; Artru, Mekhfi; Ji; Jaffe, Saito, Soffer, MS, Vogelsang

1-jet high-pT photon

STAR PHENIX

ATTA1-jet

pT[GeV]

200 GeV

500 GeV

√S

500 GeV, 800 pb-1

200 GeV, 320 pb-1

-1 < η < 2

0

0.01

0.02

0 20 40 60 80 100

ATTAγ

pT[GeV]

|η| < 0.35

200 GeV

500 GeV

√S

500 GeV, 800 pb-1

200 GeV, 320 pb-1

-0.01

-0.005

0

0.005

0.01

0.015

0 10 20 30

some LO estimates of

upper bounds for ATT
Soffer, MS, Vogelsang

→ ATT very small

Again, NLO QCD corrections are a must: scale dependence, etc.



Addendum: transversity (cont.)

further motivation for NLO:

“technical challenge” & general paucity of NLO calculations with transverse spin

why transverse spin is more complicated to handle:

long. polarization: spin aligned with momentum X

trans. polarization: spin = extra spatial direction ↔ non-trivial azimuthal dep.

�

�

� �

�

�

�

always of the form
d3δσ

dpTdηdφ
≡ cos(2φ)

〈
d2δσ

dpTdη

〉

→ φ integration not appropriate

problem: standard NLO techniques rely on integrations over full azimuthal phase space



Addendum: transversity (cont.)

recent progress: simple technique to project out φ dependence A. Mukherjee, MS, W. Vogelsang

key point: φ-dep. always stems from covariant expression

F(pγ, sa, sb) =
s

tu

[

2 (pγ · sa) (pγ · sb) +
tu

s
(sa · sb)

]

= cos(2φ) in hadronic c.m.s.

→ use F to project out φ covariantly

LO example: qq̄ → γg

���� � �

��� � �

���
pa · sa = pb · sb = 0

s2
a = s2

b = −1



Addendum: transversity (cont.)

matrix element [use u(pa, sa)ū(pa, sa) = 1
2/pa [1 + γ5/sa],. . . ]

δ|M |2 = (eeqg)2
4CF

NC

s

tu

[

2 (pγ · sa) (pγ · sb) +
tu

s
(sa · sb)

]

project with F :

1

π

∫

dΩγ F(pγ, sa, sb)δ|M |2 = (eeqg)2
4CF

NC
= 〈δ|M |2〉 X

l
terms involving pγ · sa , pγ · sb can be integrated “covariantly”

• easily generalized to NLO calculation in d dimensions:

• multiply any δ|M |2 with F(pγ, sa, sb)

• integrate all resulting scalar products with sa,b

• employ standard techniques for phase space integr.

• restore φ dependence afterwards



Addendum: transversity (cont.)

1st NLO result on p↑p↑ → γX: A. Mukherjee, MS, W. Vogelsang

0.5

1

1.5

10 20 30

dδσNLO / dδσLO

pT [GeV]

dδσ / dpT  [pb / GeV]

|η|  < 0.35

√S = 500 GeV

√S = 200 GeV

NLO

LO(× 0.01)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10 20 30

• improved scale dependence

• reasonably small NLO corrections

general conclusions on ATT at RHIC:

• requires great experimental efforts [in particular, small syst. errors]

• unexpectedly large ATT would constitute a new “spin surprise”



Addendum (II): Further improving pQCD results

resummation: exponentiation of large logarithmic terms in perturbative series

well-known example: DGLAP evolution equation

recall non-singlet evolution: µdq(x,µ)
dµ =

∫ 1

x
dz
z Pqq(z, αs(µ)) q(x/z, µ)

• convolution turns to simple product in Mellin N moment space

• the solution for moments qN and scales µ > µ0 reads

qN(µ) = qN(µ0) exp
[αs

2π
PN

qq log(µ/µ0)
]

→ we have resummed gluon emission to all orders in αs!

to see this expand exponent:

exp[. . .] = 1 +
αs

2π
PN

qq log(µ/µ0) +
1

2

[αs

2π
PN

qq log(µ/µ0)
]2

+ . . .

→ we are getting all terms αk
s logk(µ/µ0) ...



Addendum (II): Further improving pQCD results (cont.)

resummation techniques can be applied in many places . . .
Sterman; Catani, Trentadue; Kidonakis, Oderda, Sterman; Catani, Mangano, Nason, . . .

one more example: single inclusive parton production, e.g., ab→ cX

dσ̂ab

dpT
=

dσ̂LO
ab

dpT
×
[

1 + A1αs ln2(1− x̂2
T ) + B1αs ln(1− x̂2

T )
︸ ︷︷ ︸

NLO

]

+ . . . + Akα
k
s ln2k ln2k(1− x̂2

T ) + . . . + terms finite at x̂T → 1

structure stems from soft gluon emission near partonic threshold x̂T = 2pT/
√

s→1

large logarithms can be resummed (exponentiated) to all orders!

final result (for moments in x̂2
T :
∫ 1

0
dx̂2

T (x̂2
T )N−1 . . .) looks like

σ̂N
ab ' exp

[

ln N

∞∑

m=1

am(αs ln N)m

︸ ︷︷ ︸
LL

+

∞∑

m=1

bm(αs ln N)m

︸ ︷︷ ︸
NLL

+ . . .
]

main benefits: large logs included to all orders; scale dependence further reduced



Addendum (III): RHIC as a tool to uncover “New Physics”

at a collider you can always look for weird things, e.g. a

parity-violating single-spin asymmetry for high-pT jets:

APV
L ≡ dσ(+)/dpT − dσ(−)/dpT

dσ(+)/dpT + dσ(−)/dpT

idea: APV
L = 0 for QCD (recall: QCD invariant under parity

mirror
)

there will be a small APV
L = 0 from “QCD ⊗ electroweak” interference

→ any new parity-violating interaction can lead to sizable APV
L = 0

Bourrely, Guillet, Soffer; Tannenbaum; Taxil, Virey

•
√

S|RHIC ¿
√

S|TeVatron but polarization can make RHIC competitive

• could be a unique place to probe chiral structure of possible new interactions



Addendum (III): “New Physics” (cont.)

How would it look like?

AL

pp→jet X,√s = 500 GeV
|y|<0.5, ∫L dt = 800 pb

0

0.04

0.08

−0.04

-1

Λ=2.0 TeV
εη=−1

Λ=2.0 TeV
εη=+1

M   = M   
flipped SU(5)

ZZ’

M   = M   
E

ZZ’

6

M   = 300 GeV/cZ’ 2

50 100 150
E   (GeV)T 

M   = 200 GeV/c   
flipped SU(5)

Z’ 2

M   = 200 GeV/c   
 E

Z’

6

2

SM

a typical example:

standard model result

minimum requirements:

•
√

S = 500GeV, high luminosity,

and precision

• good knowledge of parton densities

and standard model “background”

[fig. taken from Taxil, Virey]



I haven’t mentioned . . .

. . . a lot of interesting things:

• many other observables

• single spin → Jianwei Qiu’s lectures

• polarization effects in final state

• input from non-perturbative methods like lattice → Tom Blum’s lectures

• role of ∆g in proton “spin sum rule” → Xiangdong Ji’s lecture

• resummation technique in detail

. . .



Executive Summary

for many years to come

RHIC is the place to learn about spin

very exciting times ahead of us


