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ABSTRACT 
 
This paper describes the dose distribution near and surrounding a beamline (Hard X-Ray Micro 
Analysis - HXMA), at events of unwanted beam loss scenarios during Top-up mode of operation 
at Canadian Light Source.  

The radiation doses were calculated using particle transport code: FLUKA. The information 
including physical size, location, and material of the different beamline components were 
extracted from the original CAD drawings and were incorporated in the Fluka model. Three 
beam loss scenarios were considered: (i) Beam is miss-steered in the storage ring (ii) Beam hits 
metal components inside the ring and (iii) Beam enters Primary Optical Enclosure (POE) and 
hits optical components. The results are presented.    
 

1. INTRODUCTION 

Canadian Light Source Inc. (CLSI) is adopting ‘Top-up’ mode of operation, instead of the 
existing ‘Decay mode’ operation in order to provide uninterrupted synchrotron radiation in the 
experimental floor. This new mode of operation requires keeping the beamline front end safety 
shutter open during injection. From the radiation protection and radiation safety perspective, it is 
important to maintain that the beamline users and users’ area are safe, secured for all operational 
condition. This paper describes the methodology and results of a study that describes the dose 
distribution near and surrounding a beamline (Hard X-Ray Micro Analysis - HXMA) at CLS, at 
events of unwanted beam loss scenarios during Top-up mode of operation. This study is 
conducted to establish a ‘proof of concept’ of measuring the worst radiaiton hazard. It is 
proposed that, if the methodology and results as described in this document meet the CLSI safety 
requirement of validating the shielding wall, the same concept can be used for other beam lines 
in the facility and may not need to repeat the same study.   
 
 1.1. CLSI Safety Dose limit 

The safety dose limits used in this document followed the dose levels as mentioned in the CLSI 
Safety Report [1] are:   

(i) Normal operation:   Dose rate < 5 Sv. h-1 for the Controlled Access Zone    

(ii) Total dose < 1.0 mSv for any single beam-loss incident.    

CLSI Safety Report defines four (04) different zones [1]:  

 ● Public Access zone (PAZ)    
 ● Free Access Zone (FAZ)  
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 2.3. Radiation Sources 

The source was defined as 2.9 GeV electrons propagating along the beam line axis (z-axis). The 
source was approximated as a pencil beam, forward peaked.  

In the case of a beam loss scenario inside the storage ring, the types of radiation likely to be 
involved are described in the CLSI documents [1]. According to the CLSI Safety Report, the 
hazards associated with ionizing radiation inside CLSI may be raised at different operational 
stages:  loss of electrons from the beam at various stages of acceleration; loss of electrons from 
the beam circulating in the storage ring; and synchrotron radiation emanating from bending 
magnets and insertion devices located around the storage ring.  

The types of radiation considered in this study:   
  ● Photon and Bremsstrahlung radiation   
  ● Neutrons [Giant resonance neutron, medium energy and high energy]   

The maximum charge of electrons in one fill of the booster ring is 3.4 nC [6]. However, 
typically, 1 nC charge is delivered at 1 shot/sec, injected from the booster to the storage ring. If 
there is 100% loss of the injected beam, it is assumed that the rate at which the beam will be lost 
is 1 nC per sec. The dose levels inside and outside of POE hutches were estimated based on the 
assumption that, 1 nC of injected beam is completely lost at one point during each beam loss 
scenario.   

The HXMA beam line is a multipurpose hard X-ray beam line. This beam line has an ‘Insertion 
Device’ that consists of 63 poles superconducting wiggler. The energy range that is used in this 
beamline is 5 to 40 kev.   

 2.4. Beam-loss Scenarios 

Three beam loss scenarios were considered: (i) Beam is miss-steered in the storage ring (ii) 
Beam hits metal components inside the ring and (iii) Beam enters Primary Optical Enclosure 
(POE) and hits optical components.  

 

Table 2: The beam-loss scenarios studied    

 

Loss scenario Description Consequence  POE scenario 

CASE 1 

Beam is miss-
steered     
vertically      

[see Appendix:1] 

   

miss-steered> 4 
mrad 

 

Hit upper wall of vacuum 
chamber  

Vertically lost beams hit SR 
shielding wall    

CASE 2 

INJECTED beam 
is obstructed  

Hit misaligned 
component in the 
Storage ring 

Create shower in the SR   Elevated dose level   outside 
of the POE walls with FE SSH 
open  



CASE 3 

INJECTED
lost to the
line  
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With the BL FE SSH open, there are some risks, even at minimal level, that the injected beam may be 
miss-steered in the SR or may cause a shower inside the storage ring due to the misaligned components 
[7]. Some studies also studied the cases where the beam was lost inside the POE. Considering the worst 
beam lost scenarios and the worst dose hazard within the user area, three different beam loss cases 
were modeled and the dose levels were studied.  

When the beam line safety shutter is open, the beam line ACIS doesn’t allow any occupancy inside the 
POE when the safety shutter is open. That means, no user or personnel will be inside the POE when the 
safety shutter is open. However, the users are allowed to work outside of the POE hutch during this 
operation.     

The dose at a given location depends on the amount of beam that is likely to be lost during the beam 
loss event. Typically, the amount of charge that is injected from BR to SR per single shot is 1 nCoul.        

For case 1: when beam is miss-steered in the straight section of the storage ring, the dose level in the 
user area outside of  POE is reportedly lower in comparison to other cases. It is also reported that, the 
dose levels are same for both the SSH open and SSH closed. The reason is the beam was miss-steered 
vertically upward to hit the wall of the vacuum chamber and then the upper part of the SR shielding wall 
(far above the level of SSH). This beam loss scenario may happen both in the normal mode and in the 
top-up mode and there is no difference to the case whether the SSH is open or close.    

For case 2: when beam hits miss-aligned components inside the SR and  creates a shower, a significant 
change in the dose level is observed in Figures 7 & 8 with FE SSH open and closed.     

For case 3: when beam hits the optical component inside the POE, the maximum dose at outside of POE 
was found as 12.5 Sv outside the wall (wall between POE and SOE) along the beam axis.  However, for 
this beam loss scenario, the maximum dose inside the POE was found as high as 975 Sv within 200 cm 
of radial distance from the target component. This high dose is not a concern from safety perspective as 
there won’t be any occupancy inside the POE. 

The results produced in this document are reasonable and justified in comparison to other published 
results. One study was conducted in the Brookhaven National Laboratory USA (NSLS) [8]. In that study, 
PK Job et al estimated the total dose equivalent rate at the exterior of the downstream wall of the first 
POE at beam height, was about 3.0E+05 milli-rem per hour (mrem/h). The beam loss scenario for the 
above study is close to the Case 3 beam loss and the result is shown in Fig. 14c. For Case 3 beam loss 
scenario, the maximum dose rate at outside of POE wall was 12.5 Sv, calculated for 1 nCoul/s beam 
loss. With proper conversion, this dose equals to 6.75E+04 mrem/h. The difference in the estimated dose 
is normal for the following reasons:  

 
 ● NSLS beam energy 3.0 Gev, CLS beam energy 2.9 Gev  
 ● The POE at NSLS has a lateral wall of 1.8 cm and a downstream wall of 5.0 cm 
  thick lead; CLS has lateral wall thickness of 1 cm (total 3 cm locally) and 3 cm   
  downstream wall thickness (11 cm locally)  
 ● The target used in NSLS study was a Safety mask, made of copper (Cu); target in CLS  
  study was Optical mirror, made of silicon (Si).    

            

According to the CLSI Safety Report, the maximum permissible dose per event that an occupant may 
receive is 1 mSv. Considering a beam loss as a ‘single event,’ it is expected that no occupant (either user 
or worker) will to receive a dose higher than 1 mSv integrated over the total beam loss period. The 
estimated dose that is described in this document can be considered as the ‘extreme case.’  In reality, the 
dose rate to the occupant would be much less than this.        

 

 



4. CONCLUSION 

It can be concluded that, the user can work in the user area with the BL FE SSH open. The POE 
shielding wall is adequate to protect the user if the beam loss time is minimized by proper 
mitigation. In order to achieve the proper mitigation, the following recommendations are 
provided: 

 ● Installing additional AARMS at each beam line at strategic beam loss locations 

 ● Setting the ‘Cumulative dose rate alarm’ in a minimum level (yet to determine and   
     require experimental measurements) to ensure minimum tolerance of beam loss 

 ● Ensure redundancy between the hardware and software to shut off the gun when the    
    dose limit is reached 
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The physical information of the beam:  

According to the physical specification, the beam has the following properties: 

(*) During the worst case, the beam can be off the orbit by 1.8 cm; the divergence angle can be as high 

as 1.8 mrad with respect to the beam axis.   

 

(*) Typically, a beam is ‘Gaussian shaped’ with FWHM (0.3, 0.3). This means that the beam is ‘spatially’ 

extended and not sharply forward peaked. The errant injected beam may be spatially extended higher. 

This feature of the beam was not considered during the ‘shielding analysis.’  

 

 

 


