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Overview of LCLS
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X rays

Like a synchrotron light source LCLS generates x-rays from
high-energy electrons

L CLS uses a one pass linac, rather than a storage ring
«Self Amplified Stimulated Emission

*The linac creates a much brighter, shorter electron pulse
than a storage ring can, allowing the free-electron laser
effect to produce intense x-rays in the 120 m long undulator




Overview of radiation safety issues
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Personnel access to experimental areas located near zero-degree
with respect to the electron beam direction

* Proper containment of electron beam (ultimate top-off mode!)

« Electron beam interactions = bremsstrahlung pointing to the Experimental
Hall (EH)=» muons and high-energy neutrons generated close to the EH

» Higher electron beam energy, higher average beam power, higher critical
energy than synchrotron Facilities

Containment of FEL beam

 FEL beam can damage (ablate) most materials due to its high peak energy density
per pulse (J/mm?)

» Use of B4C, air collimators, water dumps, ....
Control over beam line configuration

Complex Access Control modes, work in an up beam area
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Greater capability and capacity
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LCLS-II project description
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A new, independent electron injector
Use of existing accelerator, sectors 10-20 (2" km of the SLAC
Linac)
Use of existing PEP-II by-pass lines
Redesign of muon shield
New Beam Transport Hall
Tunnel to house two new undulator sources
 Hard X-ray (2-13 KeV)
o Soft X-ray (250-2,000 eV)
Beam dump Hall, X-ray front end
A new experiment hall with capacity for six experiment stations
New Access Control Systems, Beam Containment system, Area
Monitors



LCLS-II layout for radiological overview
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Radiation sources in LCLS-II
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Electron Beam up to 15 GeV, 5 kW. 5 W beam loss at any other point,
200 m\W of Bremsstrahlung at forward angle

B Beam halo interaction with collimators

 5W lost in jaws with 0.1 [mrad] grazing angle
B Beam losses on bending dipoles (BYD) in the dump line

e 20 W grazing with 0.1 [mrad] = 100 mW bremsstrahlung
Full beam into main electron dumps (DUMP1 + DUMP2)

* 5000 W f Insert )
Beam is stopped by the tune-up dumps ] devices
. Continuous
« 420 W (10 Hz) on each of the dumps beam losses
B Beam goes through wire scanner B Bremsstrahiung
source

« 42 W crossing a 40 micron carbon wire N J

REF: J.Welch, ‘LCLS-Il Electron Beam Loss and Maximum Credible Beam Power’, LCLS-Il PRD, SLAC-I-060-103-005-00-R001
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SLAC Radiation Safety System (RSS)
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Radiation Safety System
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Access Control Radiation Control
System (PPS) System(RCS)
i/li%\
I
Burn Beam Shut- Beam Shielding
Through Off lon Containment
Monitors Chambers System Configuration Control
(BTM) (BSOIC) (BCS)
e — ACM, PIC, LIONS
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Design goals, criteria

o1 AL

o M\

* Protect workers, users, general public, and the
environment on-site and off-site from radiation of
accelerator and beam operations

e Bulk shielding 5 uSv/nr (0.5 mrem/hr)
 Experimental hutch 0.5 uSv/hr (0.05 mrem/hr)
e Site boundary dose 50 uSv/yr (5 mrem/y)

e Ground water activity 740 Bg/L for 3H (20 nCi/L)
e Air activation dose 1 uSv/iyr (0.1 mreml/y)

 Maintain doses as low as reasonably achievable (ALARA)
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Shielding of the main dump hall

Two main dumps in the same pit.
Each dump can take up to 5 kW.

The tunnel above the dumps must be
accessible 1 h after beam off (50 [uSv/h])

The tunnel and shielding around the
dumps is sufficient to limit
environmental impact

The dump shielding and soil coverage
over the tunnel contain the prompt dose
to the public (0.5 [uSv/h])
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Shielding of the main dump hall — residual dose shielding
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Shielding of the FEE2 (XTOD)
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Shielding of the FEE2 (XTOD)

LCLS-I: Accessto FEE requires thick shielding walls with iron to reduce muon dose from
high-energy bremsstrahlung or from accident case

LCLS-Il: NO access to XTOD. A safety stopper is located at the zero-degree line behind first
FEL mirror to scatter bremsstrahlung radiation or un-steered electrons.

XTOD = . EH2

/

g
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XTOD collimation, safety stopper
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PPS shutter — closed
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Plan view of total dose- normal operations
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Total dose in EH2 from leakage
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Total dose in EH2 from leakage- after collimation
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Radiation dose- failure mode
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Lessons learned from LCLS-I

* Risks associated with zero-degree radiation are now better
understood

* More accurate beam loss assumptions are available

« Experience with Beam Containment Systems in the critical areas of
LCLS-I is a great advantage for LCLS-II design
- No need for a dedicated FEE

* Electron beam containment analysis should address the beam line
globally, not in sections

* Monte Carlo calculations and tools necessary for critical LCLS
designs have been developed, benchmarked and optimized



Summary

ol ALs

b M\

« LCLS-II will expand the physics capabillities and help supply
beam for the large user demand
 LCLS-II RP studies meet several challenges:

High energy, high power beam points towards users

Complex access modes: interaction between several accelerators
(FACET, ESA, LCLS-I, LCLS-Il) and beamlines, SXR, HXR
Underground tunnel (prevention of ground water activation) and also
exterior building (lateral shielding, skyshine)

Several prompt radiation fields: high-energy muons, neutrons, photons
and also wide spectrum of spontaneous and FEL radiation

Very aggressive project schedule
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Summary
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* The bulk RP studies for design of the shielding have been

performed contributing to the success in the DOE design
reviews

 Much work remains to have the first light in 2018

« Many thanks to the following for for their participations in

various reviews of LCLS-II:

* Alberto Fasso (SLAC/CERN)
Stefan Roesler (CERN)
Hee-Seock Lee (Pohang/FEL),
Rick Donahue (LBNL/NGLS)
Yoshihiro Asano (SPRING8/SACLA)
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