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Photons: Broad Perspective

 Many (most) of the talks in this meeting have
discussed properties of the medium at low
momentum scales
— Chiral symmetry, vector meson propagation in

medium, spectral functions, ...

* Much of the interest in “direct” photon
production has focused on “low” pT production
—Low =p;<2-3 GeV/c
— Goal: measure the temperature (history) of medium

e But: physics of hard photons also extremely rich
— Photons as “calibrator” for jet quenching (y-jet)
- “Jet conversion” photons
— Medium contributions to photon brehmstrahlung
— “Partonic” Photons (probes of initial state)



PHENIX: Central ARMS
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Hard Photon Production in pQCD

@ LO in pQCD, photon production is simple.

* Two contributions:
— “partonic” photons: direct from hard scattering
— “Fragmentation” photons — from fragmentation of jet(s)

A A

A A

But, @ NLO things are much more complicated

— Distinction between partonic & fragmentation
contributions becomes ambiguous.

— In principle, “isolation” cuts possible — but matching
those cuts with pQCD is difficult (virtual radiation).



Start by Measuring in p-p Collisions
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* PHENIX Preliminary
Run-3 p-p prompt y

e Background removed
via combination of:
— (Jet) isolation cuts
-0 decay tag
— Statistical subtraction

e Spectrum and yield
well-described by NLO

PQCD (w/ threshold &
recoil resummation)

e~ 15% scale uncertainty
above 5 GeV/c



A different NLO pQCD Calculation

INCNLO (v1.4): J.Ph. Guillet, M. Werlen et a/
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What about Frag. Contribution?
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* p-p analyzed with and w/o an isolation cut.
— By eye: not unreasonable.
— data — less fragmentation, but too soon to conclude.



PHENIX Comparison to INCNLO
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* No K factors, no fudge factors, absolute comp.

 Completely independent calculation.
— Good control over pQCD prompt photon calculation @ RHIC.



Background: Jet Quenching @ RHIC

e Strong suppression of high-p hadron production
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* R,a= Mmeasured / expected
e Expected based on p-p

— Scaled up by geometric T,g

e Factor of 4-5 suppression in
“central” Au-Au



Background: Jet Quenching @ RHIC (2)

STAR: p-p jet event Analyze jets by measuring Ad
between high-p; hadrons

*View of di-jet suppression >1 year ago
* Since then, much more data.

* With much “richer” interpretation
— Combination of suppression & strong distortion



(di)jet Situation is Complicated
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* Recent preliminary result from PHENIX showing

strong distortion of opposite-side jet.
— STAR sees similar but strongly p; dependent.

e Problem:

— gluon radiation strongly couples to the medium



~Photon - Jet(Hadron) Measurements(?)

Old idea (Wang et al,
Phys. Rev. Lett.
77:231-234, 1996)

Use photon-jet pairs
» & ¢ to study medium-
, 4 Induced energy loss
‘ ¢ under better
g controlled conditions

e Study of di-jet correlations affected by energy
loss of both jets.
* Photon-jet “cleaner” because on parton escapes

— “Direct” part of pQCD prompt photon
— Photon-hadron more practical for now.



n%’s and n’s
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PHENIX Au+Au Prompt Photon

o - 10-20%
af E
3E 1 ¢
22
: 1t
gﬂi- T
3 6F 3
> 5 E 30-40%
= 4 3
= 3 3 ’
g *
§1§ 3 "0
Lok R
Z 21 60-92% - MinBias ;
> L -
l.:ll _.Mu-—qr—-'-"”" :M

0 2 4 6 8 1012140 2 4 6 8 10 12 14
p; (GeV/c) p; (GeV/ic)

e Ratios of total photon to decay photon yields
*Observe large prompt (non-decay) yield, p; >4



- PHENIX Au+Au Prompt Photon Spectra
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Current PHENIX Prompt y Measurement
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*“Roa €xcludes strong suppression of hard
scattering rate.

e But, remember the denominator is pQCD ...

—pQCD matches low-statistics p-p measurement
—Still room for ~30-40% effects



Photon - Jet Measurements: Status

 PHENIX has clear, statistically significant pQCD
prompt photon measurement in Au+Au (Run 2).

— ~ 10x statistics in Run 4.
 High-pT suppression reduces decay bkgd.

In principle, possible to remove part of remaining
background:

— Direct tagging of 7% decays
- “Jet” isolation cuts — require that photon not in jet

* But these cuts are problematic in central Au-Au
— Frequently satisfied by background.

 What about non-central?
— For now, | am pessimistic: background drops slowly

* Will need to do statistical bkgd subtraction
— Stay tuned.



Jet Conversion Photons

*There is a new source of “hard” photons in QGP
— High p; quarks/gluons convert into photons in medium
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* This extra contribution must be present
— @ large enough £, incident jet sees unscreened partons

 What about at low-£?

— In principle, pole in the t channel produces “large” o

 But medium screens @ low-t & regulates pole.
— Jet-conversion y rate sensitive to screening mass.
— And potentially also to quark/gluon thermal masses.



~Jet Quenching: Photon Bremstrahlung

e For light quarks (and gluons??), in-medium
energy loss dominated by radiation.
— Interference between vacuum & induced radiation.
— For large parton p; (> ~10 GeV/c) coherence crucial.

e Unfortunately, we can’t measure the gluons.
* But we could measure photon bremstrahlung!
—=Direct measurement of medium properties.



Put it all together ...
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e Extremely rich mixture of physics contributing to
the photon spectrum in ~ 4-10 GeV/c range.

 How to unravel all of the different pieces?



How to Measure Frag. & Brem. ? (2)

* But, we can measure prompt photons produced
In associate with hadrons of given p-.
—e.g. for hadron p; > 3 GeV, with k<1 GeV

— confusion from IS radiation, jet intermingling, inter-jet
radiation strongly reduced

* Need statistical
subtraction of
decay photons.

— 1% “tagging” will help
significantly.

— In p-p can obtain ~
60% n° rejection.

e Pythia study:
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Bremsstrahlung in Heavy lon Collisions

 Bremsstrahlung
contribution only!

* Potential increase in
bremsstrahlung yield

in medium.
* More important:

— Energy & k; spectrum

will directly reflect
medium properties.

Zakharov (hep-ph/0405101)
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*In my opinion: “Holy Grail” of energy-loss physics
— Can “see” the radiation itself.

— Photon bremsstrahlung calculation is much less model
dependent than the gluon radiation calculations.

— Will not be easy to measure but it’s worth trying ...



Bremsstrahlung: k; distribution
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* Pythia (p-p) k; distribution reflects
— Non-perturbative jet fragmentation scale (j;)
- “Hard” tail due to accumulated radiation effects

 Medium bremsstrahlung should have
completely different k; scale (> 1 GeV !?)



Bremsstrahlung Measurements

* Real opportunity for qualitatively new insight on
the physics of in-medium parton scattering.

e Let’s be clear - this measurements won’t be easy.

— In worst case, need to dig out bremsstrahlung out from
under x10 larger decay signal.

=Jet quenching no longer helps when you require the
photon to be in a jet !!

— But, if the bremsstrahlung is enhanced, angular
distribution is broadened, then life is better.
 Observation by Axel: “trigger bias effect”
— Will be an issue.

— But potentially controllable by using opposite-side
“jet”/high-p; hadron requirement.

— Guidance from complete in-medium interaction
calculation like AMY would be a big help.



How to Measure Jet Conversiony ?

e Brute force:

— Measure p-p accurately enough to provide a

baseline with ~ 10% accuracy.

— Measure the Au-Au, Cu-Cu yield vs p; well
enough to see >30% effects.

e Might work if the
jet-conversion
yield is as large
as has been
predicted.

e But, Cronin ???
 Bremsstrahlung?
(measure it - but

enough of total
yield ?7?)
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One Hope: Reaction Plane Dependence

«Jet conversion will produce
more photons out-of-plane
than in-plane

- Negative v, for these “jet
guenching” photons

reaction plane

 Both Bremsstrahlung and jet-conversion photons could
contribute to prompt photon v,.

— Observation of prompt photon v, = one or both
mechanisms are present (high priority!)

— If we observe prompt photon v,, then we need to
unravel the contributions.



Prompt Photon v, — How ?
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* More specifically, measure inclusive photon, r°,
n yield vs A¢, extract prompt yield vs A¢.



The First Step on the Path: ° (A¢)

PC3 Central PC3

PC2 Magnet

* Find reaction plane with PHENIX Beam-Beam counter
 Measure n° yield vs angle relative to reaction plane, A¢
 Correct for measured reaction plane resolution.



n® Suppression vs A
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Observe:

> Less suppression
in “short” direction.

» More suppression
in “long” direction.

» Big variation in
peripheral events.

> pr dependence ?



From S. Turbide et a/
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*Too soon for conclusion - but real motivation!




Studying Jet Properties @ RHIC
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Jet Properties in d- Au
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Radiative Effects on (di)Jets

A Two—hadron az. correlation AnaIySiS Of STAR di_
| hadron A¢ distribution
by Boer & Vogelsang,

Phys. Rev. D69 094025,
2004

0.06 -
0.04 -

Q.= -

e Large radiative component to di-jet acoplanarity
— Also see Vitev, Qiu : Phys.Lett.B570:161-170,2003.
 Radiative effects are so large that we may have
to re-think p-p and d-Au analysis

— Cannot subtract off “constant background”



Summary

* There is surprisingly rich physics in the hard
photon sector.

*So much so, that understanding it & unraveling
the contributions will take some time.

 Another example of the importance of
penetrating probes

— Bremsstrahlung photons should provide cleaner
insight on parton energy loss physics.

— Jet-conversion photons are the extreme case of
radiation from parton interactions in medium.

| personally have real hope for the medium
generated bremsstrahlung measurement

— but it will take time.



Summary (2)

~«We are still in the infancy of pQCD
physics program RHIC.

—Only a few relevant measurements in p-p

—And some (e.g. prompt photons) subject to
non-trivial ambiguities.

—Many opportunities to study effects like those
discussed by Werner.

Huge final-state effects in Au-Au

=30 big that understanding the observed
effects may be difficult (e.g. di-jet)

| have high hopes for Cu-Cu data

—-See effects “turn on”
*Need more differential “jet” probes.



p-p Prompt y Production (Fixed target)

Laenen, Sterman, Vogelsang,
Phys.Rev.Lett.84:4296 (2000)
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* NLO pQCD also needs
corrections to match
fixed-target data.

e E706 claims that intrinsic
kr ~1 GeV is needed to
match pQCD to data.

* With incorporation of soft
gluon recoil and threshold
resummation, much better
description of the data.



PHENIX d-Au =° vs Centrality
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 Small Cronin effect (not expected to be large)

* It is now known that preliminary data suffer from small
trigger bias (central will go | peripheral T).



Production
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 PHENIX sees small Cronin effect
— Approx. consistent within errors with STAR K, result
— Enhancement seen in charged (baryons) all the more striking!



(di)jet h-h Correlations in d-Au / p-p

From Dan Magestro, Hard Probes 2004 talk
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STAR d-Au y-h A¢ Correlations
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* Photons dominantly from n° decay
— Reflect 0 direction

e Assume Gaussian distribution for hadron j;

e Study how j; depends on p; of hadrons
— Away from phase space boundaries j; constant.



PHENIX d-Au/p- p, n*- h, Ap Correlations
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~Alternative Method for Studying (di)jets
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Explicit Treatment of Radiation

.
0.08

Analysis of STAR di-
hadron A¢ distribution
by Boer & Vogelsang,

Phys. Rev. D69 094025,
2004
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0.04 -

Q.= -

e Conclude: large radiative component to di-jet k+
— Also see Vitev, Qiu : Phys.Lett.B570:161-170,2003.

« Without accounting for radiation initial parton
Intrinsic ky ~ 2 GeV/c (RMS).

« After accounting for radiation ~ 1 GeV/c



di-jet broadening in d-Au?
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* No apparent indication of
increased K.

e But these data are not yet
sensitive enough.

* New publication from PHENIX
with more results soon ...
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Initial-state Effects on Photons

 E706, FNAL fixed-target
experiment, claims that
parton “intrinsic” k; , with
RMS k> 1 GeV/c needed
to explain their data.

e But Sterman& Volgelsang
re-summation largely
“explains” low-p; “excess

e Soft gluon resummation is
the largest contribution.

— Recoil against initial-state
radiation.

* Photons very sensitive to
initial-state effects

— No fragmentation dilution

Laenen, Sterman, Vogelsang,
Phys.Rev.Lett.84:4296 (2000)
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Single High-pt Hadron Production

Phys. Rev. Lett. 91, 241803 (2003)
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How to Measure Frag. & Brem. ?

e Remember: separation of prompt y spectrum into
direct, fragmentation contributions is “arbitrary”.
* This may be particularly an issue @ RHIC:

— photonl/jet p;scales are < x10 p; scale of IS radiation.
—And jet cones are broad. <

Acoplanarity exaggerated —
but inter-jet radiation,
hard radiation from one jet
not shown.
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