The manifestations of strongly coupled Quark-Gluon Plasma at RHIC

Edward Shuryak
Department of Physics and Astronomy
State University of New York
Stony Brook NY 11794 USA
Outline:

- Why strongly coupled QGP?
- Collective flows: radial and elliptic, systematics: \Rightarrow viscosity
- Does charm flows?
- Where the energy of jets go? A "conical flow"
- How strong is "strongly coupled"? Quasiparticles, potentials and bound states at $T>T_c$
- Colored bound state and EoS
- A 1.5-2 GeV rho, omega, phi mesons?
Why strongly coupled QGP?

- 1a: Because hydro works well, and the viscosity is very low (Teaney, ES, Heinz, Kolb…01)
- 1b: Because parton cascade requires very large cross sections (Molnar-Gyulassy)

(a comment: they are not the same => a cascade makes no sense in a strongly coupled regime, while hydro only works better)
Why strongly coupled QGP?

- 2a: Because at $3T_c > T > T_c$ the interaction is strong enough to make multiple bound states (ES+Zahed, 03), most of them colored. Hadron-like states lead to hadron-size cross sections.

- 2b: Marginal states with small binding may lead to even larger cross sections (ES+Zahed, 03), confirmed by Feshbach resonances in trapped ultracold atoms.
Why strongly coupled QGP?

- **3:** $N=4$ SUSY YM theory at strong coupling at finite T shows features very close to sQGP at RHIC:
 - **3a:** $p, e \sim T^4$ and even the famous $p/p_{sb}=.8$ is well reproduced by large-g series (Klebanov…96,02) (not small-g)
 - **3b:** viscosity is small: $\eta/s=1/4\pi$ (Son et al,03)
 - **3c:** quasiparticles are heavy $M>>T$ while their lightest bound states have $M=O(T)$ and can be excited (ES+Zahed,03)
Collective flows: bits of history
Early hydro

• L.D. Landau, 1953
 => first use of hydrodynamics
• L.D. Landau, S.Z. Belenky 1954 Uspechi
 => compression shocks
 => resonance gas (Delta just discovered)
• G.A. Milekhin 1958
 => first numerical solution, emphasis on the transverse flow
My early hydro

• Hydro for e+e- as a spherical explosion PLB 34 (1971) 509
 => killed in 1976 by the discovery of jets in e+e-
• Looking for transverse flow at ISR, ES+Zhirov, PLB (1979) 253
 =>Killed by apparent absence of transverse flow in pp
⇒ ES+Hung, prc57 (1998) 1891, radial flow at SPS with correct freezeout surface, correct T_f (centrality) dependence was predicted
Our pre-RHIC (QM99) predictions for v_2(energy) (with D. Teaney)

![Graph showing v_2(energy) predictions with various models and data points.](image-url)
Hydrodynamics is simple and very predictive, but one has to understand few things, and so not all hydros are the same.

EoS from Lattice QCD

Local Energy-momentum conservation:

Conserved number:

\[
\partial_\mu T^{\mu\nu} = 0, \\
\partial_\mu n_i^\mu = 0
\]

Dynamic Phenomena

- Expansion, Flow
- Space-time evolution of thermodynamic variables

Caveat: Why and when the equilibration takes place is a tough question to answer.
Energy density from Lattice QCD:

\[\frac{\varepsilon_{SB}}{T^4} \]

Phase Transition:

\[T \approx 170 \, \text{MeV} \]

\[\varepsilon \approx 1 \, \text{GeV} / \text{fm}^3 \]

Putting AGS/SPS/RHIC/LHC on a map
Thinking About EoS
The Latent Heat and the ``softest point”
(Hung, ES 1995)
Understanding of the freezeouts (which some hydro groups ignored)

- **Chemical freezeout** at T_{ch} means that at $T < T_{ch}$ hadronic matter is indeed chemically frozen \Rightarrow different EoS with nonzero mu’s

- **Kinetic freezeout** at fixed T_f is wrong:
 - the larger systems cool to LOWER T_f,
 - one has to calculate the freezeout surface (Hung,ES)
 - or use an afterburner (RQMD) (Teaney, ES)
hydro describes both radial and elliptic flows
(from Phenix) $v_2 = \langle \cos(2 \phi) \rangle$

Hydro models:
- Teaney (w/ & w/o RQMD)
- Hirano (3d)
- Kolb
- Huovinen (w/ & w/o QGP)

nucl-ex/0410003
V2 systematics: it depends on many variables

• Particle type => y_t^2 m scaling (R.Lacey)
• Collision energy dependence: monotonous rise with dN/dy then saturation (Teaney+ES,01)
• (pseudo) rapidity (eta) y-dependence: basically the same $v2(dN/dy)$
• Pt: rapid growth with saturation (?)
• Centrality => $v2/s2$ scaling (Ollitrault)
A Hydrodynamic Description of Heavy Ion Collisions at the SPS and RHIC
D. Teaney, J. Lauret, and E.V. Shuryak
nucl-th/ 0110037 v2 6 Dec 2001

The dependence on dN/dy has a growing trend, with a saturation.

FIG. 24: Panels (a)-(c) show three related quantities as a function of the total multiplicity in a PbPb collision at $b=6\text{ fm}$. (a) shows the integrated elliptic flow v_2 of pions for different EOS and freezeout conditions; (b) shows the integrated elliptic flow v_2 with and without hadronic rescattering; (c) shows the spatial anisotropy v_2 with and without hadronic rescattering. At the SPS, the NA49 v_2 data point is extrapolated to $b=6\text{ fm}$ using Fig. 3 in [2]. At RHIC, the STAR v_2 data point is extrapolated to $N_{ch}/N_{ch}^{\text{sat}} = 0.545$ ($b=6\text{ fm in AuAu}$) using Fig. 3 in [8].
But the trend roughly follows the (BJ-like) hydro predictions, which is also about s- and y-dependent via local dN/dy.
The data scale as hydro:

\[y_T^{fs} \equiv k_m \times y_T^2 m \]

The data look like hydro!

R.Lacey
Sonic boom from quenched jets

Casalderrey, ES, Teaney, H. Stocker...

- The energy deposited by jets into liquid-like strongly coupled QGP must go into conical shock waves, similar to the well known sonic boom from supersonic planes.
- We solved relativistic hydrodynamics and got the flow picture.
- If there are start and end points, there are two spheres and a cone tangent to both.
Two ways to excite matter and two hydro modes: a "diffusion" and shocks/sound.

\[\epsilon_{dt}(t = t_0, \vec{x}) = e_0(z, r), \quad \vec{g}_{dt}(t = t_0, \vec{x}) = g_0(z, r)\delta^{i\kappa} + \vec{\delta}g_1(z, r). \]
Those two lead to quite different spectra, the second with a cone:

Figure 3. The normalized spectrum of associated secondaries versus the azimuthal angle ϕ. Three curves are for different p_t at $y = 0$ for $c_s^2 = 1/3$, $\Gamma_s = 1/(4\pi T)$, $\sigma = \Gamma_s$. Note the different scales. The jet disappears completely at $t = 7$ fm while the spectrum is calculated at $t = 10$ fm. Two figures (a) and (b) are for scenarios 1 and 2, respectively.
Is such a sonic boom already observed?

Mean Cs = 0.33 time average over 3 stages =

\[\phi = \pi \pm 1.23 = 1.91, 4.37 \]

Flow of matter normal to the Mach cone seems to be observed! See data from STAR,

M. Miller, QM04

Is The Away-Side Jet-Like?

STAR Preliminary

- **p+p**
 - \(4 < p_T^{\text{trig}} < 6 \text{ GeV/c} \)
 - \(0.2 < p_T^{\text{assoc}} < 4 \text{ GeV/c} \)

- **Au+Au 0-5%**

Away-side looks jet-like in p+p, not central Au+Au!
Note: it is only projection of a cone on phi
Note 2: this pt is Larger than in recent data from STAR => stronger peak and smaller background
away \langle pT \rangle \text{ dependence on angle (STAR, preliminary)}

\begin{itemize}
\item d+Au FTPC-Au 0-20\% (preliminary)
\item p+p
\item Au+Au 0-5\%
\end{itemize}

Mach shock wave?

\begin{itemize}
\item \langle p_T \rangle (\phi) \text{ has a dip structure in central AA.}
\end{itemize}
Away $<p_T>$ vs centrality

Core hadrons almost identical to medium in central collisions.

Away core $<p_T>$ drops with centrality faster than corona $<p_T>$. Core hadrons almost identical to medium in central collisions.

A punch-through at the highest trigger?
Summary/ discussion on conical flow

- Peak is where we expect,
- Well seen in $<pt>(\phi)$
- Next: 3-particle correlations \Rightarrow high statistics, to fix the rapidity of the away jet… and see if it is a cone or not
Do heavy quarks flow as well?

- The main kinematical argument:
 => one needs M_q/T more collisions

(This is a factor of about $1.5 \text{ GeV}/0.2 \text{ GeV}$, about 7 for charm and 5/0.2 about 20 for b quarks)
heavy quarks: A bit of history:

- Parton model: (e.g. R. Vogt): charm decays will completely dominate single leptons and dileptons
- ES, nuc-th/9605011: *if charm would stuck in matter*, the dileptons can be observed for $M > 3$ GeV
Whether charm stuck or not makes huge effect on dileptons at RHIC! ES 96

Figure 3: The distribution of dilepton invariant masses produced by a semileptonic decays of charmed quarks, with (stars) and without (histogram) the matter effect due to dE/dx.
Charm observables vs its transport (the diffusion coeff.) \(D = \langle x^2(t) \rangle / 6t \)
Moore&Teaney, hep-ph/0412346

FIG. 4: (Color online) (a) The nuclear modification factor \(R_{AA} \) for charm quarks for representative values of the diffusion coefficient. (b) \(v_2(p_T) \) for charm quarks for the same set of diffusion coefficients given in the legend in (a). In perturbation theory, \(D \times (2\pi T) \approx 6 (0.5/\alpha_s)^2 \). The model for the drag and fluctuation coefficients is referred to as LO QCD in the text. The band estimates the light hadron elliptic flow for impact parameter \(b = 6.5 \text{ fm} \) using STAR data [2].
PHENIX measures v_2 of non-photonic e^\pm

- electron ID in Au+Au via RICH + EMCAL
- measure and subtract photonic sources

$v_2 \neq 0$ at 90% confidence level

data consistent with heavy q thermalization

*but large errors; run4 will tell

Greco, Ko, Rapp.
PLB595, 202 (2004)
Conclusions on charm

- R_AA and v2 of charm suggest a small diffusion coeff. for c,
- Maybe an order below of what pQCD suggests
- Q: at pt>4GeV we suppose to see b-quark dominance for e, so ???
- Q: what is the dilepton background?
Theory and phenomenology of sQGP
The map: the QCD Phase Diagram

The lines marked RHIC and SPS show the paths matter makes while cooling, in Brookhaven (USA) and CERN (Switzerland).

Theory prediction (numerical calculation, lattice QCD, Karsch et al) the pressure as a function of T (normalized to that for free quarks and gluons).

Chemical potential μ $p/p_{SB} = 0.8$ weak or strong coupling?
The pressure puzzle is resolved!

2M_q(T), 2M_g(T) fitted to (Karsch et al) quasiparticle masses, as well as example of “old” \(M_\pi(T) \) and “new” \(\text{octet } M_{gg}^8(T) \)

The QGP pressure: crosses are lattice thermodynamics for \(N_f = 2 \) (Bielefeld, 2000), the lines represent the contributions of \(q + g \) quasiparticles, “mesons” \(\pi - \rho \ldots \), colored exotics \((gg_8, gg_3)\) and total (the upper curve).
Can we verify existence of bound states at $T>T_c$ experimentally?

Dileptons from sQGP:

FIG. 1. Schematic T-dependence of the masses of $\bar{q}q$ states. A, V, S and PS stand for axial, vector, scalar and pseudoscalar states. The dash-dotted line shows a behavior of twice the quasiparticle mass. Two black dots indicate places where we hope the dilepton signal may be observable.
Quark mass and the interaction strength ("α_s") via dileptons

- Three objects can be seen at nonzero p, T,L bound states (at fixed $T<T_{z.b.}$ about 2 T_c) and the near-threshold enhancement (``bump''), at any T

- Why bump? Because attraction between anti-q q in QGP enhances annihilation

- Example: $pp(gg) \rightarrow t\bar{t}$ at Fermilab has a bump near threshold ($2m_t$) due to gluon exchanges.

- The Gamow parameter for small velocity:
 $z=\pi (4/3)\alpha_s/v$; can be > 1, Produces a bump (or jump): the Factor $z/ (1-\exp(-z))$ Cancels v in phase space
a nonrelativistic approach with realistic potentials (Jorge Casalderrey +ES, 2004)

\[\sigma_{LO} = \frac{4\pi\alpha_{QED}^2 e_t^2}{3s} N_c \sqrt{1 - \frac{4m_t^2}{s}} \left(1 + \frac{2m_t^2}{s}\right) \quad (4) \]

to

\[\sigma = \frac{4\pi\alpha_{QED}^2 e_t^2}{3s} N_c \frac{24\pi \Sigma G_{E+i\Gamma_t}(0,0)}{s} \quad (5) \]

Where E is the center of mass energy and \(\Gamma_t \) is the width of the top quark. \(G_{E+i\Gamma_t}(r, \bar{r}) \) is the Green's function of the Schrodinger equation:

\[\left[-\frac{1}{m} \nabla^2 + V(\bar{r}) - (E+i\Gamma)\right] G_{E+i\Gamma}(r, \bar{r}) = \delta^3(\bar{r} - \tilde{r}) \quad (6) \]
Following the methods developed for t quark

- Khose and Fadin: sum over states, then Strassler and Peskin: Green function can be formed of 2 solutions
- We get 2 solutions numerically and checked that published t-pair production for Coulomb is reproduced up to .2 percent!
- Then we used it for "realistic" potentials
Study of near-endpoint annihilation rate using non-rel. Green function, for lattice-based potential (+ instantons) $\text{Im}\Pi(M)$ for $T=1\ldots 2\ T_c$

(a warning: very small width)
Total width is 20,100 or 200 MeV
Width is not to be trusted!

Asakawa-Hatsuda, $T = 1.4T_c$.

Karsch-Laerman, $T = 1.5$ and $3T_c$.

Figure 2: Reconstructed vector spectral function σ_V in units of ω^2 at zero momentum (a) and the resulting zero momentum differential dilepton rate (b) at $T/T_c = 1.5$ (dotted line) and 3 (dashed line). The solid lines give the free spectral function (a) and the resulting Born rate (b). The insertion in (a) shows the error band on the spectral function at $3T_c$ obtained from a jackknife analysis and errors on the average value of $\sigma_V(\omega, T)/\omega^2$ in four energy bins (see text).
Scattering amplitudes for quasiparticles

M. Mannarelli. and R. Rapp hep-ph/05050080

\(\bar{q} q\) scattering no \(q\) - gluon scattering yet

FIG. 8: Real (full line, red) and imaginary (dashed line, blue) parts of the \(T\)-matrix in the color-singlet channel (left panel), color-octet channel (central panel) and corresponding (singlet+octet) self-energy (right panel) at a temperature \(T = 1.5 T_c\) using a “gluon-induced” mass term of \(m = 0.25\) GeV.

FIG. 5: Real (full red line) and (absolute value of the) imaginary part (dashed blue line) of the light-quark (on-shell) \(T\)-matrix (in units of GeV\(^{-2}\)) in the singlet channel at temperatures \(T = 1.2 T_c\), \(T = 1.5 T_c\), and \(T = 1.75 T_c\) (left, middle and right panel, respectively) as a function of the \(q\bar{q}\) CM energy \(E\), with a “gluon-induced” quark-mass term \(m = 0.1\) GeV.
QUARK-HADRON DUALITY AND BUMPS IN QCD:
A simple exercise with all M scaling as T (the worse case scenario)
Operator product expansion tells us that the integral
Under the spectral density should be conserved
(Shifman, Vainshtein, Zakharov 78).
Three examples which satisfy it (left) the same after realistic time integral
Over the expanding fireball (as used in Rapp+ES paper on NA50), divided
by a "standard candle" (massless quarks) (right)
Summary on dileptons

- In general, 3*3 objects (for each rho, omega and phi states): L,T vectors plus a near-threshold bump

- Most observable is probably T=Tc when Vs are about 0.5-0.8 GeV in mass.

- Possibly observable enhancement is in the region 1.5-2 GeV, where 2Mq is about constant in a wide T interval. Not to be present at SPS but at RHIC.

- Realistic potential predicts quite interesting shapes, but the width (and resolution) issue is so far not quite quantitative.
Conclusions

- QGP as a "matter" in the usual sense, not a bunch of particles, has been produced at SPS/ RHIC.

- It shows very robust collective flows => sQGP is the most ideal fluid known.

\[\eta/\hbar s = 0.1 - 0.2 \ll 1 \]

And seem to have many bound states (New PD Tables?)

- Sonic boom from quenched jets?
- Charm of even bottom flows?
- New peaks in dilepton spectra, where \(\rho, \omega, \phi \) die?
Collective flows

=> collisional regime

=> hydrodynamics

The main assumption:

\[l \ll L \]

(the micro scale) \ll (the macro scale)

(the mean free path) \ll (system size)

(relaxation time) \ll (evolution duration)

In the zeroth order in \(l/L \) it is ideal hydro with a local stress tensor. Viscosity appears as a first order correction \(l/L \), it has velocity gradients. Note that it is inversely proportional to the cross section and thus is (the oldest) strong coupling expansion.
Viscosity of QGP

QGP at RHIC seem to be the most ideal fluid known, viscosity/entropy = .1 or so. Water would not flow if only a drop with 1000 molecules be made.

- Viscous corrections

1st order correction to dist. fn.:

\[\delta f \propto \frac{\Gamma_s}{T^2} f_0 (1 + f_0) p^\mu p^\nu X_{\mu\nu} \]

\(\Gamma_s \): Sound attenuation length

\(X_{\mu\nu} \): Velocity gradients

\[R^{-1} \approx \Gamma_s / \tau \]

Nearly ideal hydro!?

D. Teaney (’03)
How to get 20 times pQCD σ?

(Zahed and ES, 2003)

- Quark-antiquark bound states don’t all melt at T_c (charmonium from lattice known prior to that...)
- Many more colored channels
- all q,g have strong rescattering $qqbar \leftrightarrow \text{meson}$

Resonance enhancements

Huge cross section due to resonance enhancement causes **elliptic flow of** trapped Li atoms
Bound states in sQGP
How strong is strong?

For a screened Coulomb potential, Schr.eqn. => a simple condition for a bound state

- $(4/3)\alpha_s (M/M_{\text{Debye}}) > 1.68$
- $M(\text{charm})$ is large, M_{Debye} is about $2T$
- If $\alpha(M_d)$ indeed runs and is about $\frac{1}{2}-1$, it is large enough to bind charmonium till about $T=3T_c$ (above the highest T at RHIC)
- Since q and g quasiparticles are heavy, M about $3T$, they all got bound as well!
Fitting F to screened Coulomb

- Fit from Bielefeld group [hep-lat/0406036]

$$\frac{F_{\text{fit}}(r,T)}{T} = \frac{4\alpha(T)}{3rT} \exp\{-\sqrt{4\pi\tilde{\alpha}(T)rT}\} + c(T)$$

- Note that the Debye radius corresponds to ``normal'' (enhanced by factor 2) coupling, while the overall strength of the potential is much larger
- It becomes still larger if V is used instead of F, see later

FIG. 6: The temperature dependent running coupling determined from the large distance behavior of the singlet free energy on lattices with temporal extent $N_T = 4$ (open symbols) and $N_T = 8$ (filled symbols). The upper figure shows $\alpha(T) \equiv \tilde{g}^2(T)/4\pi$ (dots) and the value $\alpha_{\text{eq}}(r_{\text{screen}},T)$ (squares) determined from the short distance behavior of the singlet free energy (see Fig. 3). The figure in the middle shows $\tilde{\alpha}(T) \equiv \tilde{g}^2(T)/4\pi$ and characterizes the temperature dependence of the screening mass. The lower figure gives the ratio of both fit parameters. The solid lines with the dotted error band are discussed in the text.
Here is the binding and $|\psi(0)|^2$

- Our results (IZ+ES, hep-ph/0403...) for binding then reproduce the binding region from Asakawa-Hatsuda and Bielefeld group (using the Maximal Entropy Method MEM), found bound $J/\psi, \eta_c$ till $2.2T_c$:

 (a) The energy of the bound state $E/2M$ vs T/T_c from $V(T, r)$, for charmonium (crosses and dashed line), singlet light quarks $\bar{q}q$ (solid line) and gg (solid line with circles). Squares show the relativistic correction to light quark, a single square at $T = 1.05T_c$ is for $\bar{q}q$ with twice the coupling, which is the maximal possible relativistic correction.

 (b) $|\psi(0)|^2/T_c^3$ of the bound states vs T/T_c.

Solving for binary bound states
ES+I.Zahed, hep-ph/0403127

• In QGP there is no confinement =>
• Hundreds of colored channels should have bound states as well!

<table>
<thead>
<tr>
<th>channel</th>
<th>rep.</th>
<th>charge factor</th>
<th>no. of states</th>
</tr>
</thead>
<tbody>
<tr>
<td>(gg)</td>
<td>1</td>
<td>9/4</td>
<td>(9_s)</td>
</tr>
<tr>
<td>(gg)</td>
<td>8</td>
<td>9/8</td>
<td>(9_s \times 16)</td>
</tr>
<tr>
<td>(qg + \bar{q}g)</td>
<td>3</td>
<td>9/8</td>
<td>(3_c \times 6_s \times 2 \times N_f)</td>
</tr>
<tr>
<td>(qg + \bar{q}g)</td>
<td>6</td>
<td>3/8</td>
<td>(6_c \times 6_s \times 2 \times N_f)</td>
</tr>
<tr>
<td>(\bar{q}q)</td>
<td>1</td>
<td>1</td>
<td>(8_s \times N_f^2)</td>
</tr>
<tr>
<td>(qq + \bar{q}\bar{q})</td>
<td>3</td>
<td>1/2</td>
<td>(4_s \times 3_c \times 2 \times N_f^2)</td>
</tr>
</tbody>
</table>

- \(gg\) color 8*8=64=27+2*10+2*8+1: only the 2 color octets \((gg)_8\) have \((16 \times 3_s \times 3_s = 144)\) states.
Jet quenching by `ionization’ of new bound states in QGP?

- Can we observe (much more multiple) colored states directly?

 Very recent idea (IZ+ES) of ‘‘ionization losses’’ for minijets at $p_t \sim \text{few GeV}$.
 Cannot work in hadronic phase - confinement.
 If it is true, the ‘‘lost energy’’ can never be recovered (unlike for radiative losses).
Calculation of the ionization rate
ES+Zahed, hep-ph/0406100

- Smaller than radiative loss if $L > 0.5 \text{ fm}$
- Is there mostly near the zero binding lines,
- Thus it is different from both radiative and elastic losses, which are simply proportional to density
- Relates to non-trivial energy dependence of jet quenching (smaller at 62 and near absent at SPS)

dE/dx in GeV/fm vs T/T_c for a gluon 15, 10, 5 GeV.
Red-elastic, black-ionization
Theoretical sQGP in N=4 SUSY YM and AdS/CFT
A gift by the string theorists: AdS/ CFT correspondence

- The $\mathcal{N}=4$ SUSY Yang Mills gauge theory is conformal (CFT) (the coupling does not run). At finite T it is a QGP phase at ANY coupling. If it is weak it is like high-T QCD \Rightarrow gas of quasiparticles. What is it like when the coupling gets strong $\lambda = g^2 N_c \gg 1$?
- AdS/CFT correspondence by Maldacena turned the strongly coupled gauge theories to a classical problem of gravity in 10 dimensions
- Example: a modified Coulomb’s law (by Maldacena)
 \[V(L) = -\frac{4\pi^2}{\Gamma(1/4)^4} \frac{\sqrt{\lambda}}{L} \]
- becomes a screened potential at finite T

The viscosity/entropy $\Rightarrow 1/4\pi \ell$ is very small and about as observed at RHIC (D.Son et al 2003)
QCD vs CFT:
let us start with EoS
(The famous .8 explained!)

- CFT free energy at large λ is $F = (3/4 + O(1/\lambda^{3/2}))F_{\text{free}}$ (I. Klebanov et al 1996...)

- Lattice results (Bielefeld group) for QCD thermodynamics: pressure normalized to Stephan-Boltzmann value

- Weak (5 terms) vs. strong $(3/4 + \text{const}/\lambda^{3/2})$ coupling for the CFT: the ratio of the pressure to Stephan-Boltzmann value vs the 't Hooft coupling $\lambda = g^2N$.
Bound states in AdS/CFT
(ES and Zahed, PRD 2004)

• The quasiparticles are heavy
 \(M_q = \mathcal{O}(\sqrt{\lambda} T) \gg T \)

• But there are light binary bound states
 with the mass =
 \(\mathcal{O}(M_q/\sqrt{\lambda}) = \mathcal{O}(T) \)
 Out of which the matter is made of!
A complete "gravity dual" for RHIC from 10-d GR? (ES, Sin, Zahed, in progress)

- Black Holes + Howking rad. Is used to mimic the finite T
- How black hole is produced can be calculated from GR (tHooft … Nastase)
- Entropy production => black hole formation, falling into it is viscosity
- Moving brane => hydro expansion