Recent RHIC Results on Bulk Properties

Richard Hollis

21st June 2007

RHIC & AGS Users’ Meeting
The Road Ahead

- Bulk properties measurements at RHIC
 - New measurements and expanded systematics

- Scaling with N_{part}, N_{ch} or $\varepsilon_{\text{part}}$

- Simple Scaling Rules
Systematic Studies

- RHIC input
 - Energy
 - Collision system (species)

- Experimental input
 - Rapidity
 - Species
 - System size/configuration

- Varied Cross-section
 - esp. hard collisions
 - Influence toward bulk properties

- Study dominating effect
 - N_{part} or fractional cross-section

- Probe range of x_F
- Relative enhancement of baryons to mesons
- Path length and collective effects

Do systematic studies paint a consistent picture of bulk particle production?
Total Charged Hadron Distributions

dN/d\eta
flow\{v_2,v_1,\sigma(v_2)/v_2\}
Multiplicity

- Latest Results
 - Au+Au (Peripheral)
 - Cu+Cu (22.4 GeV)

- Mid-rapidity
 - Factorization in energy and centrality

- 4π
 - Extended longitudinal scaling – factorizes in energy and centrality

Factorization persistent across all systems
Elliptic Flow

- Similar systematic dependencies as multiplicity
- Mid-rapidity:
 - $v_2/\varepsilon_{\text{part}}$ scaling holds over a broad range of collision energy and system sizes
- η dependence
 - $v_2/\varepsilon_{\text{part}}$ holds over large η range
 - Extended longitudinal scaling

Geometrical scaling with $\varepsilon_{\text{part}}$
Directed Flow

- v_1 is found to scale with collision energy, not collision species
 - Comparison of same overlap geometry
- Extended longitudinal scaling applies
Elliptic Flow Fluctuations

- Large fluctuations in the v_2 signal
- Geometrical Properties are imprinted on the data:
 - Eccentricity via Flow

\[\text{Au+Au @ 200 GeV} \]
Final Charged Particle Distribution Summary

- Final distributions provide a consistent picture of particle production driven by simple scaling laws:
 - Energy, centrality factorization
 - Detailed initial geometrical configuration ($\varepsilon_{\text{part}}$)

- How do differential measurements compare
p_T Distributions

Yield versus p_T
v_2{p_T}
Freeze-out properties
Yield versus p_T

- Mid-rapidity yields versus p_T
 - Factorization in energy and centrality

- Similar behavior to bulk yields
Elliptic flow at mid-rapidity

- Latest Results:
 - $v_2(p_T)$ (200 GeV)

- $v_2(p_T)$ shape independent of centrality and system size

$v_2(p_T)$: universal scaling?

PRL 98, 162301 (2007)
Kinetic freeze-out properties

- Latest Results:
 - Freeze-out properties

- Freeze-out temperature and flow velocity follow a common dependence with number of charged particles at mid-rapidity

- Mean-\(p_T\) follow same trend

Similar dependence noted by PHENIX (JPS 2007)

Scaling of low-\(p_T\) properties with \(N_{ch}\)
Chemical freeze-out properties

- Latest Results:
 - Cu+Cu at 200 and 62.4 GeV
- Universal chemical freeze-out temperature, T_{ch}, is observed for all studied systems
p_T Distributions Summary

- First differential measurements:
 - “Universal scaling” of elliptic flow versus p_T
 - N_{ch} scaling of kinetic freeze-out properties
Chemical properties

Strangeness production
Baryon enhancement
$v_2(KE/n_q,y)$
Strangeness production – K^\pm

- Latest Results:
 - 62.4 GeV Au+Au

- Charge “splitting” of K/π as observed at SPS

- “Chemical equivalence” with SPS energies
Strangeness production – Λ

- Latest Results:
 - Λ scale reasonably with N_{part} for the same energy
 - Enhanced strangeness production due to core of core/corona model
 - More core per N_{part} in Cu+Cu collisions

Recombination Model

- Recombination Model
 - Describes the p_T dependence of strange particles
 - K, Λ
 - Fits provide good agreement with data
 - Qualitatively reproduces Λ/K^0_S ratio
Baryon Enhancement

- Enhancement is maximal in the intermediate-p_T region
 - Cu+Cu data exhibit the same systematic trends as for Au+Au system

![Graph showing enhancement in Cu+Cu data](QM2006)
Baryon Enhancement

- N_{part} scaling for p/π
 - Integrated intermediate-p_T region

- Moreover, E_T scaling exists between 200 and 62.4 GeV ($p\bar{p}/\pi^-$)
 - Baryon transport contributes at 62.4 GeV for protons

Scaling of intermediate-p_T properties with E_T
Recombination Revisited

- Recombination predicts other B/M ratios
 - Qualitative agreement.

- s-quark dependence on peak position is predicted
 - But at higher-p_T than data suggests.
Recombination Revisited

- Validity test:
 - Ω, ϕ
- A good description of the multi-strange spectra
 - Ω: dominated by thermal term
 - Look at Ω correlations
 - No near-side correlation expected

- Correlation observed
 - Magnitude of near-side correlation is independent of strange-quark content
Quark scaling of elliptic flow

- Latest Results:
 - v_2/n_q scales with KE_T/n_q
 - Holds for Cu+Cu data
 - Once ε is accounted for

PRL 98, 162301 (2007)
Identified v_2

- For different centrality bins:
 - No *universal* scaling

\[v_2(p_T, \text{centrality}) \]

\[p_T (\text{GeV/c}) \]

\[v_2/p_T^2 \]

\[\text{Min-bias, particle id'd} \]

\[\text{Centrality Dependence} \]

\[p_T/n_q (\text{GeV/c}) \]

\[0-10\%, 10-40\%, 40-80\% \]

\[0, 0.1, 0.2, 0.3, 0.4 \]

\[0, 0.5, 1, 1.5, 2 \]
Identified flow versus p_T and rapidity
 - No appreciable difference in shape
 - cf. PHENIX flow at mid-rapidity
 - No difference in magnitude

Systematics fit into existing data
Chemical Summary

- Further differential measurements:
 - $\bar{p}/\pi - N_{\text{part}}$ scaling
 - Qualitative description of B/M ratios in the recombination picture
 - But fails to describe the multi-strange correlations
 - Universal scaling of identified $v_2(p_T)$
 - Observed for min-bias across system size
 - Not observed versus centrality
Summary

- Bulk properties measurements at RHIC
 - New measurements and expanded systematics

- Scaling with N_{part}, N_{ch} or $\varepsilon_{\text{part}}$
 - For the bulk to intermediate-p_T regions

- Simple Scaling Rules
 - Applicable over a broad range of centrality, energy and colliding species
Thanks!

- Credits:
 - BRAHMS
 - Flemming Videbaek
 - PHENIX
 - Barbara Jacak, Craig Ogilvie
 - STAR
 - Aihong Tang, Subhasis Chattopadhyay, Olga Barannikova, Rene Bellwied
 - PHOBOS
 - Wit Busza, David Hofman, Aneta Iordanova

Evan, 6 weeks and 2 days

29
21st June 2007
Back-up Slides
Core/corona

- Core – high density region
- Corona – low density region around the edge

My own simulations

- Based on similar ideas

Thesis (2005)

Richard Hollis
University of Illinois at Chicago
Particle Ratios versus system size

- Particle Ratios
 - 200 and 62.4 GeV
 - Au+Au and Cu+Cu

- Weak centrality dependence, no system size dependence of particle ratios