Energy Loss in Heavy Ion Collisions

Jana Bielcikova
(Yale University)
Outline:

- introduction to energy loss
- p+p reference data vs pQCD
- gluon/light quark energy loss
- heavy-flavor energy loss
- direct photons

Observables: R_{AA}, particle ratios, two-particle correlations vs system size, energy, rapidity
High-\(p_T\) particle production in \(p+p\)

- scattering of partons followed by fragmentation \(\rightarrow\) jet
- can be calculated in perturbative QCD
- collinear factorization

\[
\frac{d\sigma^{h}_{pp}}{dyd\frac{2}{p_T}} = K \sum_{abcd} \int dx_a dx_b f_a(x_a, Q^2) f_b(x_b, Q^2) \frac{d\sigma}{dt}(ab \rightarrow cd) D_{h/c}^0 / \pi z_c
\]

- Measured in DIS
- pQCD
- e^+e^-

Parton distribution function
Matrix element
Fragmentation function
Parton energy loss in A+A ("jet quenching")

A+A collisions:
- initial state: similar to p+p
- final state: hard partons traverse medium and lose energy
 - gluon radiation
 - elastic collisions with surrounding partons
→ softening of particle spectra at high p_T

• energy loss different for gluon, light and heavy quarks (color factor, dead cone effect)

Goal: Use in-medium energy loss to measure medium properties
Radiative energy loss in QCD

4 jet quenching schemes:
• higher twist expansion
 Qi, Sterman, Wang, Wang, Zhang, Majumder, …
• finite temperature field theory
 Arnold, Moore, Yaffe (AMY)
• opacity expansion:
 - thin medium/single hard scattering
 Gyulassy, Levai, Vitev, Djordjevic, … (GLV)
 - thick medium/multiple soft scatterings
 Baier, Dokshitzer, Mueller, Peigne, Schiff (BDMPS)
 Armesto, Salgado, Wiedemann (ASW)

medium properties can be characterized by a single constant:

\[\frac{d \sigma^{h_1}}{dy dp_{T_1}} \sim \int dx_a dx_b G(x_a) G(x_b) \frac{d \hat{\sigma}}{d \hat{t}_q} \hat{D}^{h_1}_q(z_1) \]

\[\text{e.g. transport coefficient } \hat{q} = \frac{\mu^2}{\lambda} \text{ ‘average } k_T\text{-kick per mean-free-path’} \]

• static medium: \(\Delta E \propto L^2 \) due to interference effects, expanding medium: \(\Delta E \propto L \)
p+p reference data
p+p reference @ 200 GeV vs pQCD

Compilation by D. d’Enterria nucl-ex/0611012

Good agreement with theory

J. Bielcikova (Yale) 2007 RHIC&AGS Annual Users' Meeting
Proton and pion production in p+p

\[p+p \rightarrow \pi + X \]

Pion and proton spectra agree with NLO pQCD using the latest AKK fragmentation functions.

(Note: p is more sensitive to gluon fragmentation – KKP does not work!)

STAR, PLB 637 (2006)

A. Bazilevsky (PHENIX), QM06

\[\pi^0 \]

9.7% scale uncertainty is not included
Strange particle production in p+p

STAR, PRC 75 (2007)

• STAR measurement of strange particles in p+p constrained AKK FF

AKK fragmentation functions agree well with both mesons and baryons at mid-rapidity.

KKP (Kniehl-Kramer-Potter): NPB 582 (200)
Hadron production in p+p at y~3

BRAHMS, hep-ex/0701041, submitted to PRL

NLO pQCD describes production of pions and kaons well at y~3, but fails to account for large proton yields and small \bar{p}/p ratio even with AKK FF.

J. Bielcikova (Yale) 2007 RHIC&AGS Annual Users’ Meeting
Nuclear modification factors
Particle ratios
Direct photons:
- measured p+p reference
- $R_{AA}(\gamma) < 1$ for $p_T > 12$ GeV/c

Isospin effect seen?
Ongoing study at $\sqrt{s_{NN}} = 62$ GeV

π^0 and η:
- Run 5: extended reach in p_T out to 20 GeV/c for π^0 and 15 GeV/c for η
- both have a common $R_{AA} \sim 0.2$

$R_{AA}(p_T) = \frac{d^2 N_{AA}^{dN}/dp_T d\eta}{d^2 \sigma_{NN}^{AA}/dp_T d\eta}$/

binary collision scaling p+p reference

J. Bielcikova (Yale) 2007 RHIC&AGS Annual Users' Meeting
New!
Measured p+p reference at $\sqrt{s_{NN}} = 62$ GeV instead of previously used ISR data

\rightarrow R_{AA} at $\sqrt{s_{NN}} = 62$ GeV is now very close to $\sqrt{s_{NN}} = 200$ GeV!
Comparing $R_{AA}(\pi^0)$ to models

C. Loizides, hep-ph/0608133

χ^2 minimization fit to obtain the probability of a given parameter

- values given for probability > 10%

R_{AA} shows only a small sensitivity to model parameters

B. Sahlmueller (PHENIX), QM'06

$6 \leq \langle \hat{q} \rangle \leq 24 \text{ GeV}^2/\text{fm}$

$1000 \leq dN_g/\text{dy} \leq 2000$

$600 \leq dN_g/\text{dy} \leq 1600$
What do we learn from R_{AA}?

Energy loss distributions very different for BDMPS and GLV formalisms

BUT! R_{AA} is similar

More differential probes needed!
Gluon jet contribution factor increases from π, K, p towards Λ:

- e.g. $p_T = 8$ GeV/c: 50% for π
- 90% for p

If

$$\langle \Delta E \rangle \propto \alpha_s C_R \hat{q} L^2$$

and

$$\frac{\Delta E_g}{\Delta E_q} \sim \frac{9}{4}$$

At high p_T for same beam energy, system and centrality:

$$R_{CP}(\pi) > R_{CP}(p)$$

$$R_{CP}(K) > R_{CP}(\Lambda)$$

AKK = particle + anti-particle

Intermediate-\(p_T\) (\(p_T = 2-5\) GeV/c): baryon/meson splitting
\[R_{CP}^{(\text{meson})} < R_{CP}^{(\text{baryon})} \]

High-\(p_T\) (\(p_T > 5\) GeV/c):
\[R_{CP}(\pi) \approx R_{CP}(p) \]
\[R_{CP}(K) \approx R_{CP}(\Lambda) \]

Does it mean similar energy loss of quarks and gluons?
Energy dependence: anti-particle/particle ratios

π^-/π^+: independent of p_T

p/p: model calculations with/without E_{loss} do not describe data

$X.-N. Wang et al., PRC 70 (2004) - E_{\text{loss}}$

Baryon junction and coalescence models describe data at intermediate p_T

$I. Vitev et al., NPA 715 (2003) - baryon junction$

$V. Greco et al., PRC 71 (2005) - coalescence$

STAR, PRL 97, 152301 (2006)

STAR, nucl-ex/0703040
Rapidity dependence of R_{AA}

I. Bearden (BRAHMS), QM2006

R_{AA} independent of rapidity for produced mesons
Why is R_{AA} independent of rapidity?

- forward $y = a unique information about medium in the longitudinal direction in the early stage
- competing effects: shadowing, multiple scattering, energy loss (GLV), geometry
- opacity decreases \sim linearly with y
- shadowing stronger at forward y
 \rightarrow effects compensate each other
 \rightarrow R_{AA} independent of y

Barnafoldi, Levai, Papp, Fai, EJP C49 (2007)
R_{AA} of non-photonic electrons

Models have difficulties to describe the measured R_{AA}:

- radiative energy loss with typical gluon densities is not enough

 \[M. \text{Djordjevic et al., PLB 632 (2006) 81} \]

- models involving a very opaque medium agree better

 \[N. \text{Armesto et al., PLB 637 (2006) 362} \]

- collisional energy loss/resonant elastic scattering

 \[S. \text{Wicks et al., NPA 784, (2007) 426} \]

 \[H. \text{v. Hees, R. Rapp, PRC 73 (2006) 034913} \]

- heavy quark fragmentation and dissociation in medium \rightarrow strong suppression for c and b

 \[A. \text{Adil, I. Vitev, PLB 649, (2007) 139} \]

\[\text{Note: } \sim \text{agreement between STAR and PHENIX} \]

\[\text{(disagreement is common to } p+p/\text{Au+Au and cancels out in } R_{AA}) \]
Towards more differential probes …
R_{AA} vs reaction plane

Au+Au collisions at 200GeV

- Factor 2 suppression out-of-plane than in-plane
- In plane emission shows no energy loss in peripheral bins.

3<p$_T$<5 GeV/c

PHENIX, nucl-ex/0611007, submitted to PRC
Path length dependence of energy loss

\[L_\varepsilon = \text{matter thickness calculated in Glauber model} \]

- \(R_{AA} \) is universal function of \(L_\varepsilon \) for all centrality classes and both \(p_T \) ranges
- Little/no energy loss for \(L_\varepsilon < 2 \text{ fm} \)
- Formation time effect? Surface emission zone? \(v_2 \)?

\(\text{Au+Au } \sqrt{s_{NN}} = 200 \text{GeV} \)

\(\text{PHENIX, nucl-ex/0611007, submitted to PRC} \)

J. Bielcikova (Yale)
2007 RHIC&AGS Annual Users’ Meeting
Jet-like correlations at high-p_T

- Disappearance of away-side correlations observed at intermediate p_T in central Au+Au collisions
- Run 4 statistics: a punch through observed at high p_T
 - Away-side yield is suppressed: $R_{AA} \sim I_{AA}$
 - Suppression without angular broadening or medium modification
 - $R_{AA} \sim I_{AA}$ in Cu+Cu as well
Away-side di-hadron suppression at high p_T

- di-hadrons have a smaller surface bias
 \rightarrow a “better” differential probe

- χ^2-minimum narrower for di-hadrons
 \rightarrow stronger constraint on density

- extracted medium properties:
 \[\varepsilon_0 = 1.68 \text{ GeV/fm} \]
 \[q = 2.8 \pm 0.3 \text{ GeV}^2/\text{fm} \]
Di-hadron correlations: near-side peak

Near-side jet peak
Near-side ‘ridge’
Modified away-side (+ v_2)

The near-side jet interacts with the medium!

What is the ridge?
1) Medium heating and parton recombination
 Chiu & Hwa PRC 72, (034903) 2005
2) Radial flow + high-p_T trigger particle
 Voloshin, nucl-th/0312065 NPA 749, 287 (2005)
3) Parton radiation and its coupling to the longitudinal flow
4) Momentum broadening in an anisotropic QGP
 Romatschke, PRC 75, 014901 (2007)
5) Longitudinal broadening of quenched jets in turbulent color fields
 Majumder, Mueller, Bass, hep-ph/0611135

J. Bielcikova (Yale)

2007 RHIC&AGS Annual Users' Meeting
Near-side yields

M. Horner (STAR), QM2006

- increase of near-side yield at low $p_T^{\text{assoc}} (z_T)$ observed by STAR and PHENIX

- subtraction of $\Delta \eta$-independent ‘ridge-yield’ recovers centrality-independent jet yield

$z_T = p_{T,\text{assoc}} / p_{T,\text{trig}}$

J. Jin (PHENIX), QM2006

J. Bielcikova (Yale) 2007 RHIC&AGS Annual Users’ Meeting
Ridge properties

Ridge yield:
- increases with centrality
- ~ independent of p_T^{trigger}
- p_T-spectra are ‘bulk-like’
- particle composition in the ridge → see talk of M. Daugherity

J. Bielcikova (Yale)

2007 RHIC&AGS Annual Users' Meeting
Energy content of the ridge

- near-side modification in published results also due to ridge
- energy content deposited in the ridge is few GeV

\[\text{near-side } p_t \text{ magnitude sum (GeV/c)} \]

- \(4 < p_{t,\text{trigger}} < 6 \text{ GeV/c} \)
- \(6 < p_{t,\text{trigger}} < 10 \text{ GeV/c} \)
- \(0.15 < p_{t,\text{assoc}} < 4 \text{ GeV/c} \)
The golden channel: γ-jet

- hard process: pQCD calculations describe well measured data
- no surface bias
- calibrated probe: $E_{T,\gamma} = \text{pre-quenched } E_{T,\text{jet}}$
- monochromatic source \rightarrow differential measurement of jet-quenching

X.-N. Wang, Z. Huang, PRC 55, 3047, F. Arleo et al JEHP 0411, 009, T. Renk, PRC 71, 034906
First results on γ-hadron correlations

J. Jin, M. Nguyen, N. Grau (PHENIX), QM06
S. Chattopadhyay, F. Benedosso (STAR), QM06

- $p+p$: yields consistent with expectations from Pythia/HIJING
- Au+Au: a hint of away-side modification (?)
- ongoing studies in Cu+Cu (STAR/PHENIX)

- statistical and systematic uncertainties are large
- We have the tools, we just need more statistics 😊

J. Bielcikova (Yale) 2007 RHIC&AGS Annual Users' Meeting
Summary

• high-statistics Run4/Run5 enable exploration of in-medium energy loss in detail:

 integrated \((R_{AA}) \) \rightarrow \text{differential} \ (R_{AA} \text{ vs reaction plane, correlations})

 hadrons \rightarrow \text{identified particles} \ (\text{non-strange, strange, heavy-flavor})

 ‘the golden channel’ – γ-jet is emerging

• data trigger lots of interest in theoretical community

• upgrades to PHENIX and STAR will bring us even more exciting results

THANKS to BRAHMS, PHENIX and STAR for their input to this talk !!!