STAR Recent Results and perspective

Tom Trainor
(for the STAR Collaboration)

RHIC-AGS Users Meeting
May 29, 2008
Agenda

Elementary Processes

spin structure of the proton
ultra-peripheral collisions

Parton energy loss – pQCD

light- and heavy-flavor parton energy loss

Fragmentation and the medium – non-pQCD

modified fragmentation and medium properties

Hydro vs QCD

dynamical processes at small energy scales
Spin Structure of the Proton

polarized DIS: 0.2~0.3

\[
\langle S_z^p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_q^z \rangle + \langle L_g^z \rangle
\]

three recent DIS fits of equal quality:
- \(\Delta G = 0.13 \pm 0.16 \)
- \(\Delta G \approx 0.006 \)
- \(\Delta G = -0.20 \pm 0.41 \)
all at \(Q^2 = 1 \text{ GeV}^2 \)

first goal of the RHIC Spin program:
determine the gluon polarization distribution

Leader et al., PRD 75, 074027 (2007)
Polarized p-p Collisions at RHIC

\[A_{LL} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} \propto \frac{\Delta f_a}{f_a} \frac{\Delta f_b}{f_b} \hat{\alpha}_{LL} \]

\(\Delta f \): polarized parton distribution functions

\[\frac{\Delta G}{G} \quad \frac{\Delta G}{G} \quad \frac{\Delta G}{G} \quad \frac{\Delta q}{q} \quad \frac{\Delta q}{q} \]

Partonic fractions in jet production at 200 GeV

\[\Delta g(x) \] sign

for most RHIC kinematics \(gg \) and \(gq \) dominate – \(A_{LL} \) for jets is sensitive to gluon polarization
2006 Inclusive-jets A_{LL}

In the GRSV framework: GRSV-std excluded with 99% CL

$\Delta G < -0.7$ excluded with 90% CL

Statistical uncertainties 3-4 times smaller than 2005 data for $p_T > 13$ GeV/c
Other Global DIS Analyses

- 2005 STAR data excluded a broad range of models with ΔG larger than GRSV-std
- Counter-example: GS-C node near $x \sim 0.1$, large positive integral at small x

GS-C: Gehrmann & Stirling

Trainor

STAR at the RHIC-AGS Users Meeting
First Global Analysis with Polarized Jets

de Florian et al., arXiv:0804.0422

- First global NLO analysis to incorporate inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- Node in gluon distribution near $x \sim 0.1$ – opposite phase from GS-C

Trainor

STAR at the RHIC-AGS Users Meeting
Near Future: Di-jets and $\Delta g(x)$

jet cuts:

- $0.2 < \eta < 0.8$
- $\Delta \phi > 2$
- $p_T > 5$ GeV/c
- $M > 20$ GeV/c2

\[x_1 = \frac{1}{\sqrt{s}} \left(p_3 e^{\eta_3} + p_4 e^{\eta_4} \right) \]
\[x_2 = \frac{1}{\sqrt{s}} \left(p_3 e^{-\eta_3} + p_4 e^{-\eta_4} \right) \]
\[M = \sqrt{x_1 x_2 s} \]
\[y = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right) = \frac{\eta_3 + \eta_4}{2} \]
\[|\cos(\theta^*)| = \tanh \left(\frac{\eta_3 - \eta_4}{2} \right) \]

Δ-jets: direct access to parton kinematics at LO

Trainor

STAR at the RHIC-AGS Users Meeting
Di-jet Sensitivity in Run 9

EMCal acceptance combinations

Direct access to $\Delta g(x)$ in LO
Full NLO for di-jets ~ LO
Good model discrimination

$\mathbf{x} \in [0.05, 0.85]$

200 GeV di-jets dominated by q-g scattering
q polarizations large

FoM = $P^4L = 6.5 \text{ pb}^{-1}$

-data: 50 pb$^{-1}$ of 200 GeV p-p collisions with 60% polarization

Trainor

STAR at the RHIC-AGS Users Meeting
A_N 2006 Final Results – FPD

x_f dependence of A_N for forward π production

L_z orbital angular momentum

some aspects of A_N seem well-understood

SIDIS measurements and forward π^0, π^\pm data have small kine overlap, but…

most features of RHIC $A_N(x_F)$ data described by phenomenology from SIDIS
A_N 2006 Final Results – FPD

First p_T dependence of A_N for forward π production

p_T dependence of A_N at fixed x_F not explained

Sivers: A_N should decrease with increasing p_T
pp2pp: Tagged Forward Protons

- Elastic and inelastic hadron diffraction and its spin dependence in unexplored t and s ranges
- Structure of color-singlet exchange in non-perturbative regime of QCD
- Central production of light and massive systems
 - Particle production
 - Exotics: glueballs, hybrids, …

Roman Pots (RPs) measure momentum transfer from diffracted protons

STAR RPs installed (Phase I, 2008) (Phase II, additional RPs – Run 11)
 - No impact on backgrounds in STAR mid-rapidity detectors

pp2pp integrated into STAR Trigger and DAQ systems
UPC Processes

ultra-peripheral collisions

- Coherent/incoherent photo-production of ρ^0 ($\sqrt{s_{NN}} = 130, 200\ \text{GeV}$)
 - Excludes several models: PRL 89 272302 (2002); PRC 77, 034910 (2008)

- ρ^0 photo-production in dAu $\sqrt{s_{NN}} = 200\ \text{GeV}$ and AuAu $\sqrt{s_{NN}} = 62\ \text{GeV}$

- Observation of two-source interference in the photo-production reaction AuAu → AuAuρ^0 (EPR paradox)

- Resonant $\pi^+\pi^-\pi^+\pi^-$ photo-production in AuAu collisions at $\sqrt{s_{NN}} = 200\ \text{GeV}$
 - Test of the coupling to the nucleus, $\rho(1450)$ and $\rho(1700)$ candidates
e-h Azimuth Correlations

p-p 200 GeV

Reference system

e-D⁰ correlations

- **Mainly b, NLO c**
- **c, b contribute**
- **Clear same-side signal**
- **Consistent with Pythia, MC@NLO**

10× improvement with RHIC II

Significant (~50%) b contribution to NP-e above ~6 GeV/c

Trainor STAR at the RHIC-AGS Users Meeting

charm, bottom, NLO processes (splitting)

Flavor creation (LO) gluon splitting (NLO)

Comparisons to Pythia and MC@NLO

p-p 200 GeV

B fraction

R. Vogt

e-D⁰ run 6
J/ψ Production in p-p

J/ψ → e⁺e⁻
p+p 2006

STAR Preliminary

EMC+TPC electrons:
|η|<1, p_T>4.0 GeV/c

TPC only electrons:
|η|<1, p_T>1.2 GeV/c

US

LS

M_inv

E-e mass spectrum

J/ψ – h correlations in p-p
weak same-side signal

constrains B contribution to J/ψ yield

10-40× improvement with RHIC II

Trainor
STAR at the RHIC-AGS Users Meeting
γ Production in p-p and Au-Au

e-e mass spectra

p-p

Au-Au, 0-60%

Cross section measured consistent with pQCD

First measurement of γ in A-A

On-going analysis: first look at γR_{AA}

10-70x improvement with RHIC II
Di-hadron, γ-hadron Correlations

First steps to precision study with RHIC-II high luminosity

inclusive hadron suppression
di-hadron suppression

\[R_{AA} \]

\[I_{AA} \]

\[\chi^2_{IAA} \]

\[\chi^2_{RAA} \]

Trainor

STAR at the RHIC-AGS Users Meeting

nucl-th/0701045

data

di-hadrons: better probes of initial density

\[q_0^\gamma (GeV^2) \]
Away-side Di-hadron FFs

\[z_T = p_T^{\text{assoc}} / p_T^{\text{trig}} \]

Au-Au vs Cu-Cu

\[I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{pp}(z_T, p_T^{\text{trig}})} \]

- \(z_T \) = \(p_T \) of associated over \(p_T \) of trigger

- **Density of medium**
 - denser medium in central Au-Au compared to central Cu-Cu

- **Inconsistent with Parton Quenching Model**
 - Modified Fragmentation Model
γ-hadron Correlations, Clusters

multi-hadron (cluster) trigger

biased di-hadron correlations?
→ HI jet reconstruction

γ-jet events are rare → large luminosity

first measurements… RHIC run-7

10-40× improvement with RHIC II

away-side fragment spectra

single-hadron and multi-hadron triggers give similar results

suppression similar to inclusives in central collisions

Trainor

STAR at the RHIC-AGS Users Meeting
Strangeness Enhancement

strange baryons vs ϕ – yield systematics

similar trends for antiparticles

Au-Au vs Cu-Cu

enhancement measure

$$\frac{2}{N_{\text{part}}} \frac{dn/dy_{\text{AA}}}{dn/dy_{\text{pp}}}$$

strangeness enhancement does not follow a simple N_{part} power-law scaling

similar effects seen in Ω/ϕ, Λ/K p_t spectrum ratios for Cu-Cu vs Au-Au

Trainor

STAR at the RHIC-AGS Users Meeting
Energy and System Dependence

Angular correlation systematics

Common jet/ridge trends for different collision systems

\[\text{Cu-Cu} = \text{Au-Au} \]

\[\text{Cu-Cu} \sim \text{Au-Au} \]

\[62 = 200 \]

No dependence on \(A \)

No dependence on \(\sqrt{s_{NN}} \)

Stringent tests of jet/ridge formation scenarios

Trainor

STAR at the RHIC-AGS Users Meeting
Particle Type Dependence

angular correlation systematics

azimuth correlations similar for all trigger species

jet + ridge yield similar on p_T for all trigger species

jet/ridge phenomenology independent of leading flavor

Trainor

STAR at the RHIC-AGS Users Meeting
Conical Emission Studies

$\Delta \phi - \Delta \phi$ correlations

deflected jets

near

Medium

away

Conical Emission

d-Au

Au-Au 0-12%

STAR Preliminary

large improvements with STAR ToF

three-particle analysis within a two-component context

$3 < p_{T, \text{trig}} < 4 \text{ GeV/c}$ \hspace{1em} $1 < p_{T, \text{assoc}} < 2 \text{ GeV/c}$

structures provide evidence for conical emission

Trainor

STAR at the RHIC-AGS Users Meeting
Other Three-hadron Correlations

$\Delta \eta - \Delta \eta$ correlations

dAu : Jets

AuAu : 200 GeV

$3 < p_T^{\text{Trig}} < 10$ $1 < p_T^{\text{Asso}} < 3$

$|\Delta \phi| < 0.7$

\Rightarrow diffuse scattering

Trainor

STAR Preliminary

\[\frac{1}{N_{\text{trig}}} \frac{dN}{d(\Delta \phi)} \]

200 GeV Au+Au, 12% central

T2A1

T1: $p_T > 5$ GeV/c
T2: $p_T > 4$ GeV/c
A: $p_T > 1.5$ GeV/c

no suppression

no “ridge” on η

\[\frac{1}{N_{\text{trig}}} \frac{dN}{d(\Delta \phi)} \]

12% Central
40-60% MB
60-80% MB

STAR Preliminary
Di-hadron Correlations w.r.t. R

path-length increases with ϕ_s \(\text{(in} \rightarrow \text{out of plane)}\)
\[\rightarrow\] increasing away-side modification

Au+Au
200 GeV

\[\text{in-plane } \phi_s=0 \quad \text{out-of-plane } \phi_s=90^\circ\]

Ridge $C_{\text{acc}}\,|\Delta \eta| > 0.7 \quad 20-60\% \quad \text{AS}$

Jet $|\Delta \eta| < 0.7 - C_{\text{acc}}\,|\Delta \eta| > 0.7$

\[\text{d-Au} \quad \text{d+Au}\]

$\Delta \phi = \phi_{\text{assoc}} - \phi_{\text{trig}} \text{ (rad)}$

\[3<p_T^{\text{trig}}<4 \quad 1.5<p_T^{\text{assoc}}<2.0 \text{ GeV/c}\]

di-hadrons relative to the reaction plane

- Ridge drops from in-plane to out-of-plane
- Jet peak stays consistent with d-Au
Femtoscopy Systematics

Radii related to n_{ch}

- Cu-Cu, Au-Au
- 62, 200 GeV
- also at smaller \sqrt{s}

Heavy/light emission

- Coulomb Fit to 0-10% central AuAu
- $R = (6.7 \pm 1.0)$ fm
- $\Delta_{out} = (-5.6 \pm 1.0)$ fm

Correlation sources

- $p+p \sqrt{s_{NN}}=200$ GeV
- $C(Q_{out})$
- $C(Q_{side})$ standard
- $C(Q_{long})$ new parameterization
- multiple correlation sources important for small n_{ch}
- momentum conservation?

Important for small n_{ch} and lower energies

- not b or N_{part}

Shift due to radial flow

- more flow effects

Trainor STAR at the RHIC-AGS Users Meeting 2007

pp pp - $R = (6.7 \pm 1.0)$ fm

LS US

Radial Flow Effects

m_t dependence: evidence for radial flow

flow field

homogeneity

region shrinks as m_t increases

m_t trends the same in A-A, p-p

→ evidence for strong radial flow in A-A

but, does that imply radial flow in p-p?

what relation to QCD processes?

Trainor

STAR at the RHIC-AGS Users Meeting
v_2: elliptic flow studies

Differential v_2 Studies

![Graph showing v_2 vs. $(m_T - m) / n_q$](image)

Upper limit on v_2 fluctuations

Challenges models of initial-state eccentricity fluctuations

- No participant-eccentricity scaling
- Sizeable v_2 for ϕ mesons (sparse hadronic interactions) \Rightarrow partons

v_2 and its fluctuations probe dynamics at different time scales

Trainor

STAR at the RHIC-AGS Users Meeting
Incomplete Thermalization?

ϵ_{Npart} vs ϵ_{CGC} for AuAu 200 GeV collisions. Fitted limit with standard ϵ and CGC ϵ.

$K = 0$

Fitting function: H-J Drescher et al. PRC 76, 024905 (2007)
CGC ϵ: A. Adil et al. PRC 74, 044905 (2006)

$\frac{v_2}{\epsilon} \sim 30\%$ below ideal Hydro, even for central collisions

Knudsen number K is not ~ 0 as for ideal hydro, must be > 0.5 to explain $\frac{v_4}{v_2^2}$

Some features inconsistent with complete thermalization not easily dismissed

Trainor
STAR at the RHIC-AGS Users Meeting
K/π Fluctuations

STAR preliminary

K/π fluctuations appear consistent with NA49 at highest SPS energy

K/π fluctuations at same dN/dη: little variation with energy or system size

Higher RHIC luminosity and STAR ToF

should greatly improve this analysis

featured element of low-energy scan program

Trainor

STAR at the RHIC-AGS Users Meeting
2D Angular Autocorrelations

\[
\frac{\Delta \rho}{\sqrt{\rho_{\text{ref}}}}(\eta_{\Delta}, \phi_{\Delta}) \sim N-N
\]

\[2D \text{ fits} \quad \text{minijets} \]

\[\text{azimuth quadrupole} \quad \text{elliptic flow}\]

\[\text{peripheral} \quad \text{star preliminary} \quad 200 \text{ GeV Au-Au} \quad \text{star preliminary} \quad \text{central}\]

Trainor

STAR at the RHIC-AGS Users Meeting

arXiv:0704.1674

\[\leftrightarrow \]
Model-Fit Parameters

\[\frac{\Delta p[2]}{\sqrt{p_{\text{ref}}}} \equiv \bar{n} v_2^{2\{2D\}} \]

\[v_2^{2\{2\}} \in \{v_2^2, v_2^4, \ldots\} \]

\(~\text{“elliptic flow”}\)

\[v \equiv 2n_{\text{binary}} / n_{\text{participant}} \]

accurate separation of azimuth quadrupole from other structure

\[\text{minijet same-side peak} \]

\[\text{amplitude} \]

200 GeV

62 GeV

\[\text{amplitude} \]

200 GeV

62 GeV

\[\text{minijet peak volume} \]

\[\eta \text{ width} \]

\[\text{minijet peak \(\eta \) width} \]

\[\text{star preliminary} \]

\[\text{peak volume} \]

\[\text{medium?} \]

\[\text{sharp transitions in minijet properties} \]
Energy and Centrality Trends

$$v_2\{2D\} = \frac{2\pi \Delta\rho[2]}{\sqrt{n} \rho_{\text{ref}}}$$

- **saturation?**
- **per-pair**
- **squeezeout**
- **Bevalac**
- **per-particle**
- **quadrupole**

universal trend
- above 13 GeV

no transition

no medium sensitivity?

no EoS, medium properties (viscosity)
Summary

- 2006 inclusive-jet A_{LL} data restrict $|\Delta G|$ to small values, inclusive-π A_N data consistent with DIS on x_F, puzzling on p_T
- Di-jet, γ-jet A_{LL} data should provide direct access to differential $\Delta g(x) \rightarrow$ gluon spin structure fully revealed
- Heavy-flavor E-loss probes coming on line, strong pQCD tests
- Accurate parton E-loss through di-hadron, γ-hadron studies
- Fragmentation strongly modified, insensitive to leading flavor
- Complex medium dynamics strongly coupled to parton E-loss
- Evidence for strong transverse flow, but paradoxical aspects
- Conventional hydro picture, viscosity challenged by minijets

STAR: Unprecedented access to QCD in p-p and A-A

RHIC II and STAR ToF: essential upgrades