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• longitudinal acceleration: radio frequencey cavities
• transverse motion

• bending and focusing
• Hamiltonian, variables
• Equations of motion
• Courant-Snyder functions, invariant, emittances
• Tunes
• Liouville’s Theorem
• dispersion function
• transverse beam size
• nonlinearities, chromaticity

• longitudinal motion, acceleration, ...
• phase stability
• momentum compaction
• transition energy

• Luminosity
• low-β interaction region
• beam-beam interaction, tune shift
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Why collide?

• To get to higher energy in the center of mass, of course.

A+B → X

M2
cm = s = (PA + PB)µ(PA + PB)µ

• fixed target (B): sft = (EA +MB)2 − P 2
B ∼ 2EAMB

assuming EA �MA.

• head-on collisions: sc = (EA +EB)2 − (~PA + ~PB)2 ∼ 4EAEB

assuming also that EB �MB as well.

RHIC: 250 GeV×250 GeV protons
√
s = 500 GeV.

Equivalent fixed target would require a beam of 133 TeV protons.
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Some types of colliders

• Linear colliders e+ + e− (SLC)

• Particle+anti-particle with a single ring
• e+ + e−: many examples (SPEAR, VEPP4, LEP, CESR, ...)
• p + p̄ (Tevetron, SPP̄S)

• Dual rings: (ISR, B-factories, HERA, RHIC, LHC)
• Not restricted to same species for each beam, or the same energy.

• Future possibilities include:
• Another electron+hadron collider
• Linear collider for e+ + e− in the TeV range
• Muon collider

Disclaimer: The list of examples is not meant to be exhaustive.
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Acceleration with RF cavities
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Linac: ~F = q ~E(t). Ring with rf cavity

• Must maintain synchronism of bunch with rf phase.

• Particles oscillate in energy about the stable synchronous phase.
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Particle Trajectories in Magnetic Fields

Dipole magnets bend the beam
around the ring.

B

p

proton

q=+1

F

Bend magnet (dipole)

Field out of screen

ρ = p
qB⊥

Charged particles are deflected by
magnetic fields. Lorentz Force:

~F =
q

γm
~p× ~B

Quadrupole magnets focus the
beam for stability.

Magnetic
Field

Protons moving into screen

S

N

N

S

Magnetic Lens  (quadrupole)

Force

Vertically focusing

Horizontally
defocusing

∂By

∂x
=
∂Bx

∂y
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Momentum compaction and transition

• Momentum compaction: αp = dL
L

/

dp
p

, L is ring’s circumference.

ωrev =
2π

τ
=

2πβc

L
dωrev

ωrev

= −dτrev
τrev

=
dβ

β
− dL

L
=

(

1

γ2
− αp

)

dp

p

• Phase slip factor: ηph = γ−2 − αp, γt = 1/
√
αp (RHIC: γt ∼ 23)

• Transition energy: Utr = mc2

√
αp

, when ηph = 0.

• Below transition: velocity increase dominates (dβ/β).
• Above transition: particle is relativistic (β close to c),

momentum compaction dominates (dL/L).

• Homework: Show that the momentum compaction of Earth is −2.
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Longitudinal equation of motion

φ̈+
ωrfηphqV

2πβ2γmc2
(sinφ− sinφs) = 0

ωrf = hωrev

• φ is the rf phase of the beam particle when it crosses the cavity.

• h is harmonic number.
• RHIC: h =360 for 28 Mhz, or 7 × 360 = 2520 for 197 MHz.

• q, m are charge and mass of beam particle.

• V is the peak voltage of the rf cavity.

E(s, t) = V sin(ωrft+ φs)
∞
∑

n=−∞
δ(s− nL)

• for fixed energy the synchronous phase φs = 0.
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Longinutinal motion above transition

ϕs ϕs+2π

τ+|dτ|
τ

τ−|dτ|

Vrf

ϕ=ωrft

• Illustrated for harmonic number h = 1.
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Small oscillations and synchrotron frequency

Linearize Eq. of motion for small amplitudes:

φ = φs + ϕ

0 ' ϕ̈+ Ω2
sϕ

• Angular synchrotron frequency: Ωs = ωrev

√

hηph cos φs

2πβ2γ
qV
mc2

• In general |Ωs| � 1.

• Synchotron tune: Qz = Ωs

ωrev
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Hamiltonian

H(X,PX , Y, PY , Z, PZ ; t) =

√

(~P − q ~A)2 +m2c4 + qφ

After a bunch of canonical transformations and φ = 0, ~A = (0, 0, As):

H(x, x′, y, y′, z, δp/p0; s) ' − q

p0

As −
(

1 +
x

ρ

)(

1 +
δp

p0

− 1

2
(x′2 + y′2) + · · ·

)

s= ρθρ

x
z

y

Z

X

Y

Design trajectory coordinate system
Local traveling

Fixed lab coordinate
system

θ

ρ =
p

qB⊥

x′ =
dx

ds

y′ =
dy

ds

Paraxial approx.: |x′|, |y′| � 1
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Paraxial coordinates

Expand about the design trajectory.

s= ρθρ

x
z

y

Z

X

Y

Design trajectory coordinate system
Local traveling

Fixed lab coordinate
system

θ

x′ =
dx

ds
' dpx

p0

y′ =
dy

ds
' dpy

p0

z = s− v0t

δ =
∆p

p0

~X =

















x
x′

y
y′

z
δ = ∆p

p0
















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Hill’s Equations

x′′ + kx(s)x =
δ

ρ(s)
,

y′′ + ky(s)y = 0,

with δ =
∆p

p0

.

For quadrupoles:

kx =
q

p

∂By

∂x

ky = −q
p

∂By

∂x

Harmonic oscillator with periodic spring constant.

Periodic conditions: kj(s+ L) = kj(s), ρ(s+ L) = ρ(s)

where L is length of periodic cell.

• Horizontal motion has inhomogeneous dispersion term.
◦ Ignore it for now.
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Solutions to Hill’s Equation

Use Floquet’s (Block’s) Theorem ⇒
Quasi-periodic solutions of form:

x(s) =
√

Wβ(s) cos(ψ(s)), with

ψ′(s) =
1

β(s)
.

Periodicity of β-function: β(s+ L) = β(s).

Note: In general ψ(s+ L) 6= ψ(s) + n2π. Resonances are bad!

x′(s) = −
√

W
β

[α(s) cosψ(s) + sinψ(s)] ,

with α(s) = − 1
2
β′, and so α(s+ L) = α(s).
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Courant–Snyder Invariant

For a particular trajectory with initial conditions:

• Solve for sinψ and cosψ from equations for x and x′.

• Use sin2 ψ + cos2 ψ = 1 to get an invariant:

W =
1

β

[

y2 + (αy + βy′)2
]

(Action variable: J = 1
2
W)

• Functions of s: y(s), y′(s), β(s), α(s). (β and α are periodic.)

• Eq. (1) is the equation for an ellipse.
• Area of ellipse = πW.

• Beam envelope: ±
√

β(s)εrms

• πεrms is the rms emittance
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Transport and Betatron Oscillations

FODO: Alternate focusing and defocusing lenses for stability.

Horizontal Betatron Oscillation
with tune: Qh = 6.3,

i.e., 6.3 oscillations per turn.

Vertical Betatron Oscillation
with tune: Qv = 7.5,

i.e., 7.5 oscillations per turn.
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2d Phase Space Plots

Horizontal Betatron Oscillation
with tune: Qx = 3.28,
tracked through 10 turns
with 8 periodic cells.

x

x’

Ellipse area = πW =

∮

x′ dx

' 1

p0

∮

px dx

Poincaré plot of particle on suc-
cessive turns for one location in
the ring.
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Liouville’s Theorem

• Most beams have a low enough density, so that we ignore hard collisions
between particles.
• Thus we can use a 6d phase space rather than a 6N-d phase space.

• In the phase space of coordinates and their corresponding canonical mo-
menta, the phase flow of the particle trajectories evolves so that the volumes
of differential volume elements are preserved.
• In other words, the Jacobian determinant is 1.

• Emittance is the area of the projection of the beam’s phase-space volume
onto a particular (xi, Pi) plane.
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Expansion of Trajectories

Expand trajectory Y = T(X) in Taylor series about design orbit:

~Y = ~T0 +

6
∑

i=1

∂~T

∂∆Xi

(0)Xi +

6
∑

i,j=6

∂2~T

∂∆Xi∆Xj

(0)XjXk + . . .

Linear first order derivative is Jacobian matrix M of transformation with

Mij =
∂Yi

∂Xj

=
∂Ti

∂Xj

• Liouville’s theorem requires that |M| = 1.

• A more restrictive requirement is that M be symplectic: M ∈ Sp(2n,R)
(e.g., see Goldstein’s Classical Mechanics, 2nd Ed.)
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Matrices for various elements

• In linear modeling we just calculate the Jacobian matrix for each individual
element (drift, dipole, quad).

• Then to propagate through a group of elements, we just need to multiply
matrices.

• Matrix for a drift of length `

Md =















1 ` 0 0 0 0
0 1 0 0 0 0
0 0 1 ` 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1














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• For a horizontal bend, i.e., sector dipole
of design radius ρ and bend angle θ):

ρ

θ

Mb =















cos θ ρ sin θ 0 0 0 ρ(1 − cos θ)
− 1

ρ
sin θ cos θ 0 0 0 sin θ
0 0 1 ρθ 0 0
0 0 0 1 0 0

− sin θ −ρ(1 − cos θ) 0 0 0 −ρ(θ − sin θ)
0 0 0 0 0 1














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• For a quadrupole of length ` and strength k = q
p

∂By

∂x
(k of Hill’s Eqn.):

• (This is a horizontally focusing quad if k > 0.)

Mqf =



















cos(
√
k`) 1√

k
sin(

√
k`) 0 0 0 0

−
√
k sin(

√
k`) cos(

√
k`) 0 0 0 0

0 0 cosh(
√
k`) 1√

k
sinh(

√
k`) 0 0

0 0
√
k sinh(

√
k`) cosh(

√
k`) 0 0

0 0 0 0 1 0
0 0 0 0 0 1



















• If k < 0, quad is horiz defocusing; replace upper-left 4×4 block with:













cosh(
√

|k|`) 1√
|k|

sinh(
√

|k|`) 0 0
√

|k| sinh(
√

|k|`) cosh(
√

|k|`) 0 0

0 0 cos(
√

|k|`) 1√
|k|

sin(
√

|k|`)

0 0 −
√

|k| sin(
√

|k|`) cos(
√

|k|`)












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• For a solenoid of length ` and field B
• Define k = qB0

p

Msol =

















1+cos kl
2

sin kl
k

sin kl
2

1−cos kl
k

0 0

−k sin kl
4

1+cos kl
2

−k 1−coskl
4

sin kl
2

0 0

− sin kl
2

− 1−coskl
k

1+cos kl
2

sin kl
k

0 0

k 1−coskl
4

− sin kl
2

−k sin kl
4

1+cos kl
2

0 0
0 0 0 0 1 0
0 0 0 0 0 1

















• Notice that this matrix couples the horiz. and vert. motion.

• For experiment solenoids at high energy, the coupling terms are generally
small but nonnegligble.

lim
p→∞

Msol = Md.
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FODO: Trajectory and Envelope

Lattice with 10 FODO cells
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• Red curve is 1st turn.

• Blue curve is 2nd turn.
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• 50 turns begin to fill up envelope.

• Envelope ∝
√

β(s).
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RHIC beta functions
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• Polarized proton lattice at 100 GeV.

• Right plot is zoomed in around PHENIX.

• STAR and PHENIX: β∗ = 0.7 m; 7.5 m at other IR’s.
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• One turn matrix: M1turn =
∏N

j=1 Mj

• Can get tunes from eigenvalues: λ±j = e±i2πQj

• Stable motion for real Qj ; unstable if Qj complex (not real).

• Can permute product of matrices to propagate the 1-turn matrix.
• Tunes don’t depend on starting point, i.e. eigenvalues invariant under

similarity transformations.
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Dispersion Function

• Inhomogeneous solution Hill’s Equation:

x′′ + kx(s)x =
δ

ρ(s)

η′′x + kx(s)ηx =
δ

ρ(s)

• Dispersion function is periodic: ηx(s+ L) = ηx(s).

x(s) = xβ(s) + xδ(s)

= xβ(s) + ηx(s)δ with δ = ∆p
p
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Dispersion of FODO Lattice
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Tunes for the simple FODO lattice
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pl
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qx = 0.2766, qy = 0.3301, Qs = 0.0153

• Single particle tracked for 2048 turns.

• With sextupoles to correct chromaticities (i.e. a nonlinearity).

• With coupling (rotate 1st quad by 0.007 radian).

• Strong synchrotron sidebands
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Chromaticity

ξx =
dQx

dδ
, ξy =

dQy

dδ

Recall Homogeneous Hill’s Eqn.: x′′ + k(s)x = 0

For a quadrupole:

k =
q

p

∂By

∂x
=

q

p0(1 + δ)

∂By

∂x
' k0(1 − δ)

• Shifting the momentum changes the focusing of each quad.
• Thus it shifts the tunes.

• Compensate with sextupole magnets: By = b2(x
2 − y2), Bx = 2b2xy.

• x = xβ + ηxδ
• Downside: introduces amplitude dependent tune shifts.
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RHIC tunes from Schottky cavity

• Can see coherent and incoherent tune information.

• Left shows high freq Schottky harmonics (∼2 GHz) with betatron sidebands.

• Right shows synchrotron sidebands around revolution harmonic.
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Transverse beam size

σ2
x = 〈(x2 − 〈x〉2)〉 = 〈(x2

β + x2
δ + 2xβxδ − 〈xβ〉2 − 〈xδ〉2 − 2〈xβ〉〈xδ〉)〉

= 〈x2
β〉 − 〈xβ〉2 + 〈x2

δ〉 − 〈xδ〉2

= σ2
xβ

+ σ2
xδ

= βxεx,rms + η2
xσ

2
δ ,

since the betatron and synchrotron oscillations are independent and should be
added in quadrature.
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Transverse emittances

The rms contour ellipse in the xx′ phase space has area= πεx,rms with

εx,rms =
1

π

∮

x′rms dx ' 1

π

∮

px,rms

p0

dx =
1

πβγmc
Ix

with the invariant Ix =
∮

px,rms

• Normalized emittance: πεNrms = πεrms × βγ

• The decrease of ε(∝ 1
βγ

) with energy is referred to as adiabatic damping.

• For a 95% contour ellipse: ε95% ' 6εrms, assuming a 2d Gaussian dist.

σx =

√

βxε
N,95%
x

6βγ
+ η2

x

(

σp

p

)2

.
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RHIC dispersion function
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• RHIC dispersion with STAR and PHENIX β∗ = 0.7 m

• Right: zoomed in around PHENIX.
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Resonances

Resonance conditions can occur when

NxQx +NyQy +NzQz = N, for Nx, Ny, Nz, N ∈ Z

The beam can blow up or be driven out of the ring by a resonance.

• Integer resonances are typically driven by imperfections in the lattice, espe-
cially a misalignment.
• An integer resonance has a linear growth in amplitude.

• Quadrupoles can drive the half-integer resonances.

• Sextupoles typically drive 1
3
-integer resonances.
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RHIC tune plane

28 29Qx
29

30

Qy

Order=7    Periodicity=1
Orders: 1234567

• NxQx +NyQy = N

• Order: Nx +Ny

• slope> 0 tend to be stable

• slope≤ 0 are unstable

• RHIC tunes for present run:
• Qx = 28.695, Qy = 29.685
• indicated by black dot.

• Nonlinearities smear the dot.
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Beam-beam interaction
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Functional form of beam-beam force
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• Same sign: repulsive force,
i.e., lowers tunes

• A test particle sees an almost linear gradient in the core of the beam.
• The beam-beam force produces odd harmonics.
• r0 is classical radius; N is number of particles in bunch.
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RHIC protons:
r0 = 1.5 × 10−18 m

N = 1.3 × 1011

εN,95% = 20 × 10−6 m

NIP = 2

∆Qbb ' 0.01

Some e+ + e− colliders have achieved |∆Qbb| ∼ 0.04.
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Luminosity

Interaction rate:

dN

dt
= σL =

∫

σ(~X2, ~X1)ρ2(~X2, t) |~v1 − ~v2| ρ1(~X1, t) d
6
X2 d

6
X1,

= |~v1 − ~v2| f0Nb σ

∫

ρ2(~x− ~v2t) ρ2(~x− ~v1t) d
3x dt

~vj is the velocity of a particle in the jth beam.
σ is the total cross section, and
ρ1 and ρ2 are the density distributions of the two beams.
Nb is the number of bunch crossings per turn.

Instantaneous luminosity: L0 ' Nb
frevN1N2

4πσxσy
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IR beam envelope shape: hour glass effect

In a field free region the beta functions are parabolic:

βi(s) = β∗
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, for i ∈ {x, y}

σ

σmin

=

√

1 +

(

s

β∗

)2

-8

-6

-4

-2

 0

 2

 4

 6

 8

-3 -2 -1  0  1  2  3
be

am
 s

iz
e 

[σ
-1

m
in

]
s [m]

Plotted for β∗ = 0.5 m.
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Hour glass factor
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For round beams with
β∗

1x = β∗
1y = β∗

1x = β∗
1y

ε1x = ε1y = ε1x = ε1y
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Courtesy of Wolfram Fischer

2009: RHIC Polarized proton collisions at 250 GeV

Lpeak ' 0.85 × 1032 cm−2s−1 (Design Manual: 2 × 1032 cm−2s−1)
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Courtesy of Wolfram Fischer
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• D. A. Edwards and M. J. Syphers, An Introduction to the Physics of High

Energy Accelerators, John Wiley (1992).
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Rings, Cambridge (1993).

• H. Weidemann, Particle Accelerator Physics, 2nd Ed., Springer (2007).
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