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CAUTION
This talk contains (mostly) unpolarized physics
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INTRODUCTION
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What are Parton Distribution Functions?

Consider a process with one hadron in the initial state

According to the Factorization Theorem we can write the cross section as
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What are Parton Distribution Functions?

The initial condition cannot be computed in Perturbation Theory
(Lattice? In principle yes, but ...)

The evolution with the energy scale is given by Altarelli-Parisi evolution
equations (or DGLAP or renormalization group equations for mass
factorization)

∂
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where ⊗ denotes the Mellin convolution

The splitting functions P can be computed in PT and are known up to
3-loop (NNLO)
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Should we care about PDFs (and their uncertainties)?
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Should we care about PDFs (and their uncertainties)?

Errors on PDFs are in some cases the dominating theoretical error on
precision observables

Ex. σ(Z 0) at the LHC: δPDF ∼ 3%, δNNLO ∼ 2%

[J. Campbell, J. Huston and J. Stirling, (2007)]

Errors on PDFs might reduce sensitivity to New Physics

Ex. Extra Dimensions discovery in dijet cross section at the LHC:
Mc=4TeVMc=2TeV

2 XDs

4XDs

6XDs

Standard Model zone

Mc=6TeV Mc=8TeV

[S. Ferrag (ATLAS), hep-ph/0407303]
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Problem
Faithful estimation of errors on PDFs

Single quantity: 1-σ error

Multiple quantities: 1-σ contours

Function: need an "error band" in the space of functions (i.e. the
probability density P[f ] in the space of functions f (x))

Expectation values are Functional integrals

〈F [f (x)]〉 =

∫
DfF [f (x)]P[f (x)]

Determine an infinite-dimensional object (a function) from a finite set of data
points ... mathematically ill-defined problem.
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Solution
Standard Approach

Introduce a simple functional form with enough free parameters

q(x ,Q2) = xα(1− x)βP(x ;λ1, ..., λn).

Fit parameters minimizing χ2.

Open problems:

Error propagation from data to parameters and from parameters to
observables is not trivial.

Theoretical bias due to the chosen parametrization is difficult to assess.
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THE NNPDF
METHODOLOGY
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The NNPDF methodology
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The Neural Network Approach in a Nutshell

Generate Nrep Monte-Carlo replicas of the experimental data.

Fit a set of Parton distribution functions on each replica, thus defining a
sampling of probability density on the space of the PDFs.

Expectation values for observables are Monte Carlo integrals

〈F [fi (x ,Q2)]〉 =
1

Nrep

Nrep∑
k=1

F
(

f (net)(k)
i (x ,Q2)

)
... the same is true for errors, correlations, etc.
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Monte Carlo replicas generation

Generate artificial data according to distribution

O(art) (k)
i = (1 + r (k)

N σN )

"
O(exp)

i +

NsysX
p=1

r (k)
p σi,p + r (k)

i,s σ
i
s

#

where ri are univariate gaussian random numbers

Validate Monte Carlo replicas against experimental data
(statistical estimators, faithful representation of errors, convergence rate
increasing Nrep)

O(1000) replicas needed to reproduce correlations to percent accuracy
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Proper Fitting avoiding Overlearning

Let’s see how proper fitting works in a toy model
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Proper Fitting avoiding Overlearning

Need a redundant parametrization to avoid parametrization bias.

Need a way of stopping the fit before overlearning sets in to avoid fitting
statistical noise.
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How to avoid Overlearning

Stopping criterion based on Training-Validation separation

Divide the data in two sets: Training and Validation
Minimize the χ2 of the data in the Training set
Compute the χ2 for the data in the Validation set
When validation χ2 stops decreasing, STOP the fit
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Why use Neural Networks?

Neural Networks are non-linear statistical tools.

Any continuous function can be approximated with neural network with
one internal layer and non-linear neuron activation function.

Efficient minimization algorithms for complex parameter spaces.

They provide a parametrization which is redundant and robust against
variations.
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Neural Networks
... just another basis of functions

Multilayer feed-forward networks
Each neuron receives input from neurons in preceding layer and feeds
output to neurons in subsequent layer

Activation determined by weights and thresholds

ξi = g

∑
j

ωijξj − θi


Sigmoid activation function

g(x) =
1

1 + e−βx

A 1-2-1 NN:

ξ
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1 ) =
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1 ω
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Neural Network vs. Polynomial form

Neural Net Fit (χ2 = 1) Polynomial form Fit (χ2 = 1)
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RESULTS
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NNPDF1.0: Experimental data
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Kinematical cuts:
Q2 >2 GeV2

W 2 = Q2(1− x)/x >12.5 GeV2

∼ 3000 points.
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NNPDF1.0: Parametrization

Parametrization of 5 combinations of PDFs at Q2
0 = 2 GeV2

Singlet : Σ(x) 7−→ NNΣ(x) 2-5-3-1 37 pars
Gluon : g(x) 7−→ NNg(x) 2-5-3-1 37 pars
Total valence : V (x) ≡ uV (x) + dV (x) 7−→ NNV (x) 2-5-3-1 37 pars
Non-singlet triplet : T3(x) 7−→ NNT 3(x) 2-5-3-1 37 pars

Sea asymmetry : ∆S(x) ≡ d̄(x)− ū(x) 7−→ NN∆(x) 2-5-3-1 37 pars

185 parameters
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NNPDF1.0 Results
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NNPDF1.2: Constraining the strange distribution

Determination of both s and s̄ allowed by inclusion of NuTeV dimuon data

1
Eν

d2σν(ν̄),2µ

dx dy
(x , y ,Q2) ≡ 1

Eν
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dx dy
(x , y ,Q2) · 〈Br (D → µ)〉 · A (x , y ,Eν)
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* Neutrino and anti-neutrino dimuon
production from NuTeV.

* HERA-II ZEUS data on NC and CC
reduced xsec at large-Q2.
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NNPDF 1.2 Results
Total strangeness determination

x
-410 -310 -210 -110 1

) 02
 (

x,
 Q

+
xs

-0.2

0

0.2

0.4

0.6

0.8

1
CTEQ6.6
MSTW08

NNPDF1.0

Current fit

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

) 02
 (

x,
 Q

+
xs

0

0.05

0.1

0.15

0.2

0.25

0.3
CTEQ6.6
MSTW08

NNPDF1.0

Current fit

Data region
→ Moderate uncertainties, larger
than CTEQ6.6/MSTW08
Extrapolation region
→ Blow-up of uncertainties due to
lack of experimental constraints
Difference with NNPDF1.0 is a signal
of parametrization bias

 0

 0.1

 0.2

 0.3

 0.4

 0.01  0.1  1

s+
(x

,Q
2 =

20
 G

eV
2 )

x

Nrep=25

A. Guffanti (Univ. Freiburg) NNPDF methodology and results 24 / 31



NNPDF 1.2 Results
Strange Asymmetry determination: s−(x , Q2)
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Analysis [S−](Q2 = 20 GeV2) · 103

NNPDF1.2 0 ± 10
MSTW08 1.4 ± 1.2
CTEQ6.5s 1.2 ± 1.1

AKP08 1.0 ± 1.3
NuTeV07 1.3 ± 0.8

NNPDF uncertainty on [S−] is large enough to explain the NuTeV (non-)Anomaly.
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NNPDF 1.2 Results
Strange Asymmetry determination: s−(x , Q2)

Only theoretical constraints on s−(x ,Q2
0) is the valence sum rule.

At least one crossing required by sum rule, but some replicas have two
crossings.
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NNPDF 1.2 Results
CKM matrix elements determination

Joint determination of |Vcd | and |Vcs| CKM matrix elements

XX

CKM unit. fitCKM unit. fit

NNPDF1.2NNPDF1.2
ÈVcsÈÈVcsÈ

ÈVcdÈÈVcdÈ
0.22 0.23 0.24 0.25 0.26

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Result for the combined fit

|Vcs| = 0.96± 0.07
|Vcs| = 0.244± 0.019

ρ[Vcs,Vcd ] = 0.21

|Vcs| most accurate direct determination

|Vcd | accuracy comparable to other
determinations from dimuons

Ability to disentangle (large) uncertainties on PDFs from (small)
uncertainties on physical parameters
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Towards NNPDF 2.0
The first NNPDF Global Fit

Inclusion of hadronic data (Drell-Yan EW gauge boson production and
Jets) crucial to constrain certain PDFs.

NLO computation for hadronic observables too slow to be used in a
parton fit⇒ many parton fits use K−factors (impact on the accuracy
difficult to assess).

We use fastNLO to include jet observables and develop our own fastDY
for DY-like observables.

First preliminary fits look promising expect the set to be public in Fall ’09
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g1 and Bjorken sum rule from Neural Networks
A first step in the polarized territory

[L. Del Debbio, A. Piccione and AG, in preparation]

The NNPDF methodology is used to obtain a bias-free parametrization of
the polarized DIS structure functions gp

1 and gd
1 from asymmetry data and

a revalutation of the Bjorken sum rule.

We use the available data for the virtual photon asymmetry A1

We assess the impact of different assumptions on the extraction of g1
from A1 data.
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g1 and Bjorken sum rule from Neural Networks
A first step in the polarized territory

We obtained a bias-free parametrization of gp
1 and gd

1 .

We are now working on the extraction of the couplings αS, gA and the
higher-twist term from the computation of the Bjorken sum rule.
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Conclusions

An accurate determination of Parton Densities and a faithful
determination of their errors will play a crucial role in the success of the
LHC program.

The NNPDF Approach, based on combining Monte Carlo techinques and
Neural Networks is effective in tackling problems affecting traditional PDF
fits (parametrization bias, data incompatibility).

The methodology is especially effective estimating the uncertainies in
situations where experimental information are scarce.

Project status
Global DIS fit (NNPDF1.0) completed and available in LHAPDF.
Dedicated strangeness analysis (NNPDF1.2) yields interesting results, to
be released soon.
Work in progress on the first global fit including hadronic data
(NNPDF2.0).
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