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Abstract

Transverse momentum dependent PDFs in high energy processes
P.J. Mulders, NIKHEF & VU University, Amsterdam

The basic idea of PDFs is achieving a factorized description with soft and hard parts, soft parts being portable and hard
parts being calculable. At high energies interference disappears and PDFs are interpreted as probabilities. We aim to go
beyond the collinear situation. We thus consider besides the dependence on partonic momentum fractions x also the
dependence on the transverse momentum p; of the partons. Experimentally that dependence on transverse momenta
shows up in azimuthal asymmetries for produced hadrons or jet-jet asymmetries. In combination with polarization one
can explain single spin asymmetries or look at production of polarized Lambdas.

Single spin asymmetries are examples of time-reversal odd (T-odd) observables, which rely on phases in a
scattering process. In a gauge theory one naturally expects phases, but these need to be detected through interference
or, as it turns out in high-energy scattering processes, by considering transverse momenta (p; = iD; — gA;) in a proper
color gaug-invariant theoretical description. The relevant transverse momentum dependent (TMD) distribution functions
in the partonic correlators can be interpreted as ‘single spin correlations’ describing transverse spin distributions in an
unpolarized hadron or unpolarized quarks in a (transversely) polarized hadron. For gluons similar correlations can be
considered. The TMD correlators emerge with specific future or past-pointing gauge links as well as more complex
gauge link structures, that depend on the color flow in the hard subprocess, complicating the universality of PDFs. To
compare with collinear treatments, one can consider specific pr-weighted cross sections and recover the Qiu-Sterman
description of e.g. single spin asymmetries in terms of gluonic pole matrix elements.

The study of TMD correlators thus breaks the simple universality of quark and gluon distributions multiplying a hard
cross section, but the resulting description offers various new possibilities to employ particular spin-momentum
correlations of partons in high energy processes, while such correlations of course also offer new insight into hadron
structure.

ABSTRACT



Issues

& Basic goals
= Try to incorporate small p; (two scales) extending f(x) to f(x,p?)
» Reduce effects of NLO/NNLO/...

& (Theoretical) complications

= QOperator structure (gauge links) and twist expansion

= Gluonic interactions essential (Brodsky, Hwang, Schmidt, ...)
» Effects from soft gluon limit (Qiu, Sterman, Koike, ...)

= Universality and factorization (Qiu, Yuan, Vogelsang, ...)

& Opportunities/Applications
= New effects (Sivers, Collins, Boer-M)

= Combination with polarization is extremely useful, but also jet
effects/ broadening/ Lambda production (polarimetry)

INTRODUCTION



Novel: phases in gauge theories
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PDFs and PFFs

Basic idea of PDFs is getting a factorized description of high energy
scattering processes

~ 2
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Hard part: QCD & Standard Model

& QCD framework (including electroweak theory) provides the machinery
to calculate transition amplitudes, e.g. g*q —» q, q0 — g*, g* — (q, qq
— qq, qg — qg, etc.

& Example:

dg9 — q9

& Calculations work for plane waves
(0l (&) p.s)=ui(p,s)e™

@ Use relations such as U.(p,S) U; (p,s)=(p+ m)ij

HARD PROCESS



Soft part: hadronic matrix elements

e For hard scattering process involving electrons
and photons the link to external particles is the
‘one-particle wave function’

<O‘Wi (f)‘ P, S> =u,(p,s) e P

e Confinement leads to hadrons as ‘sources’ for
qguarks

(X )P)e™

e and ‘source’ for quarks + gluons
<X ‘Wi (&)A” (77)‘ P> Hi(P=po)-E+ipn

e and ....

PARTON CORRELATORS



Soft part: hadronic matrix elements

Thus, the theoretical description/calculation for hard processes
involves [instead of u;(p)u;(p)] forward matrix elements of the form

@, (p. )j D P|i7,(0)| X >< X |,(0) [P > 5(P—P, — p)

(27)°2E,
e

quark
momentum (2 )

£’ <Pl )y (9| P>

<P|7, )~ () (&) | P>

PARTON CORRELATORS



Soft parts: gauge invariant definitions

éé

@ Matrix elements containing A ~ A™p, (collinear gluons) produce
gauge link £
[C] _ : u
Uiz = exp(—lgjds Aﬂj
0
@ ... essential for color gauge invariant definition

O (p; P) = J‘ 'p§<P|w O)Ug Ly (6)|P)

@ Not calculable like uu, but use parametrization (with ‘spectral functions’)

@i (p, P) = (p); S (p?, p.P...) + (P); S (%, p.P,..) +...



Parton p belongs to hadron P: p.P ~ M?
For all other momenta K: p.K ~P.K ~s ~ Q?

Introduce a generic lightlike vector n satisfying
P.n=1, then n ~ 1/Q

The vector n gets its meaning in a particular
hard process, n = K/K.P

e.g. in SIDIS: n = P, /P,.P (or n determined by

Ralston and Soper 79, ...

Order: partonic momenta
at high energies

P and q; )
Expand quark momenta
p:x/P”+pT‘T‘+anf‘\ —p'=pn-~1 i
|

In remainder: retain two scales

(NON-)COLLINEARITY
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Jaffe (1984), Diehl & Gousset, ...

Integrating quark correlators

@ ... rather than considering general correlator ®[€l(p,P,...), one
integrates over p.P = p~ (—=Mg?, which is of order M?) and/or p;

(D:}(X’pT;n):J‘d(é; );j o e'™ (P, (0) v, (&) >§n0 TMD
o106m =[S e (P70 QP o colina

@ The integration over p- = p.P makes time-ordering automatic (Jaffe,
1984). This works for ®(x) and ®(x,p;)

@ This allows the interpretation of soft (squared) matrix elements as
forward antiquark-target amplitudes, which satisfy particular
support properties, etc.

@ For collinear correlators ®(x), this can be extended to off-forward
correlators and generalized PDFs

(NON-)COLLINEARITY
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Boer & Vogelsang

Relevance of transverse momenta?

& In a hard process one probes quarks and gluons

p=xP+p;
‘ 1Pk & Parton momenta fixed by kinematics (external momenta)
2 ETK DIS x=p.n/P.n=0Q%/2P.q=x,
sipis  z=K,.n/kn=PK,/P.q=12,
& Also possible for transverse momenta of partons
- -1
b Kii  sIDIS Oy :q+XBP_Zh Kh:kT_pT

DY Or =0—XF —XP, =P + Py 5
2-particle inclusive hadron-hadron scattering b
-1 -1 2
, O =2 K +7,°K, = xR = XF, S
/ @)
/ @)
0P K, = Pir + Por — Ky =Ky %1

pp-scattering We need more than one hadron and
knowledge of hard process(es)!

NON-COLLINEARITY
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Qiu & Sterman, 1997

Relevance of transverse momenta?

TMD-correlators are not T-invariant
QCD is T-invariant

T-odd observables <-> T-odd TMDs
Example of T-odd observable: single spin asymmetry
Left-right asymmetry in p(P,) p,(P,) = 7(K)X

& Collinear hard T-odd contribution zero (~o.?),

pr-contributions remain

RPSrK, o Zs 25,7k
£ R (&
@ _ 6.\'5)1I\/|°252Tk . gp&\pi}l\sﬂk + gp1 pZSZ\/'[lﬁ'\,‘)
p~XP+ P+ @
k ~ z_lP + kT ... + ‘normal’ twist three stuff

NON-COLLINEARITY
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Gauge-invariant definition of TMDs:
which gauge links?

d(&P)*E o
(27)’

O (x;n) = _[ (5 P) 'p§<P|wJ(O)U[[82]w,(§)|P>§ln=§T=0 collinear

O (x, prin) = | (Pl7; OV v (9)|P),, | ™D

@ Gauge I|nks follow from inclusion of quark-gluon matrix elements
¢
[C] _ . U
Uil =7 exp(—ugjds Aﬂj
0

@ Basic (simplest) gauge links for TMD correlators:

_I_ -

€
These become a unique ‘simple’ Wilson line upon p;-integration

NON-COLLINEARITY

E"T ‘ éT
o1 [ * | <) . . oI+
g
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Gauge link calculation for SIDIS

7 /O ; /Q
P ﬁ PP, "666655’6666@;
Expand gluon fields and reshuffle a bit:
u P . u 1 R Tel:
A (pl) =n.A( pl) ﬁ‘HAr (pl) T = [n-A( p1) p +1G; (pl) +:|
: -
Coupled to a final state
parton, the collinear gluons
add up to a U, gauge link,
¢ (with endpoint from
: P transverse reshuffling)
-
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Gauge link calculation for SIDIS

%[ils & SIDIS
-k
P

* *
e i’ ______________ ¢ * N ___
| 4

B @({o
U%(p) Ul (k)

For simple color flow,
absorb in ®(p) and A(K)

/ /

O o[+ A -1
2 _ch (p)o-;/q—>qu (k)
.

/ / |
P | A
-
X * ¢ )
1
i
\____/ ;
|

GAUGE LINK



Gauge link calculation for SIDIS

do

d*g,

=[(@(p)UL" (K)) T (AKUE(P) T T,

‘ ‘ kinematical decoupling

=[@(p)U" (k) T (AKU T (p) T,

simple color flow! o
=[@"(p) " A" (K) T,

[V, I1=0 \j
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. Gauge link calculation for DY

DY
Py
Py
[p,] [p.]T
M2 > | ; (p) /uw (p,)

absorb in ®(p,) and ®(p,)

d / /
d 2:-1- = @ pl)q)[qj] ( pz)&qq—w

Gauge link differs from the SIDIS one!

For simple color flow, ®—

18



Collinear parametrizations

& Gauge invariant correlators - PDFs AlElagy: .
& Collinear quark correlators (leading part, u(p,s)u(p,s)=z(p+m)d+ys)
no n-dependence, no link dependence) /
q q q q P S ~ S Pﬂ S,u
PU(X) = (100 +8. 0/ ()75 + N8 ) S| SSuqr+Ss

@ Interpretation: quark momentum distribution f,9(x) = q(x), chiral
distribution g,%(x) = Aq(x) and transverse spin polarization h,9(x) =

dg9(x) in a spin 12 hadron
& Collinear gluon correlators (leading part)

1% 1 1% 1 1%
Py () = (=01 1 () +iS.27" 97 (X))

& Interpretation: gluon momentum distribution f,°(x) = g(x) and

polarized distribution g,%(x) = Ag(x)



Including flavor index
one commonly writes

flq (X) — CI(X)
0, (X) = Aq(x)

h'(x) = 5q(x)

For gluons one
commonly writes:

flg (X) =0 (X)
07 (X) = Ag(x)

TATION FUNCTIONS

20



TMD parametrizations

Gauge invariant correlators - distribution functions
TMD quark correlators (leading part, unpolarized) including T-odd part

(X, p;) = (fﬁ(x, pr)xih (x, p?)%jz

2

@ Interpretation: quark momentum distribution f,9(x,p;) and its
transverse spin polarization h,*(x,p;) both in an unpolarized hadron

@& The function h,*9(x,p,) is T-odd (momentum-spin correlations!)

& TMD gluon correlators (leading part, unpolarized)

1% 1 1% r V+l T
2 (X, pr) :5[_941 £ (x pﬁ){ PRt ]hfg(x, p?)]

M2

& Interpretation: gluon momentum distribution f,°(x,p;) and its linear
polarization h,*9(x,p;) in an unpolarized hadron (both are T-even)

(NON-)COLLINEARITY

21



BUTION FUNCTIONS
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. TMD correlators: gluons

a ; d P d2 i No ' n
q)gﬁ[C’C](X’ Pr; n) :j (izﬂ)_)s éT e’ <P|U[[§C,2>]F (O)U[[é:,é!] F ﬁ(§)| P>§.n=o

@ The most general TMD gluon correlator contains two links, which in
general can have different paths.

@ Note that standard field displacement involves C = C’

F () > UL F (U

[$.7]
@ Basic (simplest) gauge links for gluon TMD correlators:
E"T E.»T
@ [++] 0. [[r——]"
g é— _ g ’ - 'y é_
ng gT‘
- B -5 - | S —
O, [+ + D -] J
g o2 é_ = - ' :

NON-COLLINEARITY



T.C. Rogers, PJM, PR D81:094006,2010/hep-ph 1001.2977

Color entanglement

e lllustrated in quark-quark scattering (even without color exchange)

several
eikonal
factors

o ~[D(p UM (p,, k, k,)LAK)U S (py, py, ko)L, ]
< [O(p, U (p,, Ky, k)T AU (py, Py, k)T

kinematically decoupled, but color entangled!

COLOR ENTANGLEMENT
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Color disentanglement?

X ¥
kP k k—ppy 5_ kpp K
1" 1 — - —— - - g m—d
ar ﬁ W 4 &
PP, b P‘E’1 PP, Pre’
(@ © %)

COLOR ENTANGLEMENT
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T.C. Rogers, PJM, PR D81:094006, 2010/hep-ph 1001.2977

Color disentanglement?

LUt p)...
1

o ~[@(p U (p,, Kk, k)T AU (py, p,, k)T,
<[D(p, U (p, K, k)T Ak U Y (p,, p,, k)]

—

-/
J ...UE””T(pl)--?,__u£”1](p1)... ______________________
2O S B

UIU+ = W(pl)
/

o = [ (p) A k)T
x [ (p, )T A (K, )T

COLOR ENTANGLEMENT
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Color disentanglement

e Correlators with more complex gaugelinks, such as

Ey o1
T T ew [ T T = W

—f T —— ——
€ £~

e |If only a TMD for one hadron is involved color can be disentangled
in this way (conjecture)

depT ..W[“I(p)...zjdsz LUl pup)... =1

e This can be used to simplify the integrated cross sections and to
study single weighted azimuthal asymmetries

[d?ar af [ d?ky [d%kyr . 8% (G Ky —Kyr )
= [d?ky Kt [d%hor. + [d%k [d2or ki .
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TMD treatment (tree levell!)

v" In situation that just the p;-dependence of a single hadron is

X ..

relevant, we find a TMD correlator with specific process-dependent
gauge links:

19 _ 5 90y p ), ()20 A, (2)..

d p1T D,abc

do R .
= 2 P ()P (%) Gope, ATz K)o

d k1T D,abc

but there is no full TMD factorization

do C, (D C, (D D C, (D
qu - Z CD[ 1( )](Xl plT)cI)[ 2( )](XZ’ pZT)O-gbl)C . AEJ l( )](Zl’ 1T)
T D,abc

‘single-hadron’ TMD factorization + ... T

28



TMD treatment (tree levell!)

do .
~ [C1(D)] [C,(D)] "[D] [C.(D)]
d Z (D (Xl plT)(D i (XZ’ pZT) ab—c... AC ' (Zl’ 1T)
qT D,abc
Note that even for ‘single-hadron” TMD

factorization, the summation over D is a
summation over diagrams ard color-flow,

e.g. for qq—> qqg subprocess:

do N + +1 A

d2q _ CD[(W) ](1) CD[ON) ](2) » (55_])qq A[(W) ](1)A[(W) ](2)
T

ol D11]

ONOI\)

+ + -2~
BUT REMEMBER: + oM () ol (2)—— » G AWy AV (2

THIS EXPRESSION N )
CANNOT BE COMPLETE! ey

APPLICATIONS
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Result for integrated cross section

do
d’q,

~ > o,mut 21, o, ular,.) el A autliaz,.)..

ab—c... 00
D,abc

Integrate into collinear cross section

O(x) = [d?p; ©(x, py)

APPLICATIONS
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Result for integrated cross section

do
d’g,

~ Z DI (x  p YD (x  p )G AECi(D)](z

ab—c... 1! 1T)
D,abc

Integrate into collinear cross section

P (x) = _[d i Pr P! (X, pr) Gauge link structure

becomes irrelevant!

o~ Z(Da(xl)q)b(xz) &ab—>c...Ac(Zl)"'

abc

~ D . .
O e, = Z gb]% ~ (partonic cross section)

APPLICATIONS

31



Result for single weighted cross section

do i |
- Z (D[Cl(D)](Xl plT)CD[CZ(D)](Xz’ pZT) [D] AE:Q(D)](Zl’ 1T)

ab—c...
d qT D,abc

Construct weighted cross section (azimuthal asymmetry)

O () = [d*p; py @I(x, pr)

(7o) ~ > DOV x)D, (%) 6. A(Z)... + ..o

D,abc

New info on hadrons (cf models/lattice)
Can be handled theoretically

Allows T-odd structure (explain SSA)
Leading cos 2¢ effects in DY

Jet broadening (weighting of cos 2¢)

APPLICATIONS

In each term,
dependence on gauge
link remains for only
one of the correlators

AN NI N NN
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. Result for single weighted cross section

d R .
d q - Z c:[)[Cl(D)](Xl plT)(D[CZ(D)](X pZT) ('EIELC .AE:Q(D)](Zl lT)
T D,abc

ar o)~ D PIEPN)D,(%,) 630 A (). + e

o o) ~P¥E OIECN()D, (%) 650 A(Z)- + oo

o o) ~ DO (x)D, (%,) 530 A7) + oo

o7 o) ~ O PN YD, (x,) 611 A(Z). +

D,abc

APPLICATIONS



quark + antiquark » gluon + photon

Four diagrams, | ety
each with two _®_

similar color flow

s N2 1 1
ossibilities —
p [N — = ]
dO' N2 2 t
—1[_N [+W)] 1y [+ (W' )] ~ [--"1_ -1 - ] - [--"]
q2 [ (D CD q—>7gA (D (D q—>79A ]
CIT d
‘Single hadron’ TMD of D ke _ CD[ ](D[—T] -
factorized expression! aa T d ZqT Cqg-
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Drell-Yan and photon-jet production

Drell-Yan Ot = Py + Por
oo L

Photon-jet production in hadron-hadron scattering
H,H,—JJ
do™™ _ N2—1[ N° (D[+(W)](D[+ W] ~ A[—,—T]

O
2 N LnN221 qa—y9—9g
d g,

1 [-] [—*]A [--"]
Nz—lq)q CDCT A ]

qa—7r9

APPLICATIONS

35



Drell-Yan and photon-jet production

Weighted Drell-Yan

Photon-jet production in hadron-hadron scattering
d o HiHzao Y

O

_ON2-a[ N2 W) [+ W] 2 [--"]
dqu N [Nz—lq) CD qq—ngg

1 [-] [—*]A [--"]
Nz—lq)q CDCT A ]

qa—7r9

APPLICATIONS
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Drell-Yan and photon-jet production

Weighted Drell-Yan Consider only
----------------------- p,7 contribution

Photon-jet production in hadron-hadron scattering
d o HiHzao Y

O

_ON2-a[ N2 W) [+ W] 2 [--"]
dqu N [Nz—lq) CD qq—ngg

1 [-] [—*]A [--"]
Nz—lq)q CDCT A ]

qa—7r9

APPLICATIONS
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Drell-Yan and photon-jet production

Weighted Drell-Yan

I

a HiH, >\ _ al[-] ~ :
(g7 ™) = 0D G, +o
I

<q1q o HiH2—>3 > = N[N (Dgg(wnq)_& A

|

|

N?-1 qa-qqa—>yg—g :
__1 pdlp A :
N2—1q)5q CDGO-QG—WQAQ] T I

|
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Qiu, Sterman; Koike; Brodsky, Hwang, Schmidt, ...

Result for single weighted cross section

do Z (D[Cl(D)](Xl pn)q)[CZ(D)](sz 0,.) AZE.ELC _A[;Ci(D)](Zl,le)...
d qT D,abc
(g70)~ Y DD, () 60 AL(Z).w + o

D,abc
D (x) = ¥ (x) + CY Oz p2X(x, x)

\ /

T-even universal matrix T-odd
elements (operator structure)
P-le @pl Hp

—{ oppp)  — Pg(x,X) is gluonic pole
. L g (x, = 0) matrix element
D5 (X, X=X,

APPLICATIONS
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Result for single weighted cross section

do ) |
- Z (D[Cl(D)] (Xl plT)CD[CZ(D)] (XZ’ pZT) z[it[))l)C .AE:C1(D)](21’ le)"'
d qT D,abc
(7o)~ Y O x)D,(x,) 6100, A(). +

D,abc
D (x) = ¥ (x) + CY Oz p2X(x, x)

N\ /

universal matrix
elements

Examples are:
CG[U+] =1,C,V1=-1,C WUl =3 C.[Trwu*l = N

(@)
(]
o

APPLICATIONS
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Result for single weighted cross section

d A '
g . ~ Z (D[Cl(D)](Xl plT)q)[CZ(D)](XZ’ pZT) {EIELC .AE:Q(D)](Zl’le)"-
T D,abc
(gF o)~ 3 DLONx)D, (%) 6 A(Z).ne + .o

D,abc

D2 (x) = D2 (%) + CL Oz 0L (x, X)

<Q?’ ff> ~ > DI(X)D(X,) Gy ye A (Z) e +

abc

T Z”(Dg 2 (X, %)@y (X,) Opagp e Ao (1) + v

abc

5 [U(C(D)] 5LP] luonic ol
o Cs (gluonic pole
e Z Oeb>c.. cross section)

APPLICATIONS
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Drell-Yan and photon-jet production

» Weighted Drell-Yan CDZ‘E{] = Cbgq —72'(ng

a _HH,»>y\ _ m;Aal-] -
(g ™M) =D 5+

e Weighted photon-jet production in hadron-hadron scattering
al[+W)] _ Ho a
/CDaq =0;, +7D;,

a _HH,—>J\ _ N2-1p N? al+(W)] -
(g oHe? ) = NA [N @l 5 A

q-qa—>r9— g

1 al-] ~
N2-1 (I)a q (DCTO-CICT—WQ

A+

\ al-] _ @ a
o) = d — 70,

APPLICATIONS
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Drell-Yan and photon-jet production

= Weighted Drell-Yan Olqla—y

a HH, -7\ _ A« - a A
<qT o >—CDanDq0'qq_)y +7zCI)GqCDq( qu_)y)+...

e Weighted photon-jet production in hadron-hadron scattering

Gluonic pole
a _HH,»I\ _ ria ~ Cross sections
<qT o > a [(D@ QCDGO-OIﬁﬁygAg
o4 N 2 +1
+ 70 D, ( O 47-srg )A ] +.
Note: color-flow in this case Olqlq-79
is more SIDIS like than DY
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Bomhof, PJM, JHEP 0702 (2007) 029 [hep-ph/0609206]

Gluonic pole cross sections

For quark distributions one needs

A[D]
normal hard cross sections qq—>qq [ZD;

For T-odd PDF (such as transversely & ZC[U(D)] ~[D]
polarized quarks in unpolarized proton) [ala—qq
one gets modified hard cross sections [D]

(gluonic pole cross section)

y
APPLICATIONS
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Bomhof, PIM, NPB 795 (2008) 409 [arXiv: 0709.1390]

Universality and factorization for TMDs?

& We can work with basic TMD functions ®(x,p;) + ‘junk’
@ The ‘junk’ constitutes process-dependent residual TMDs

QI(x, pr) =@ (x, pr) +[ DI, pr) - @HI(x, py) |

. J
Vv

>
SOMWWN ()

oM+ (X, pT) = 2! (X, Pr )— @ (X, Pr )+ st (x, pT)

Ol(x, pr) =2 0M(x, py) -1 CLIO (X, pr )+ 5OV (X, p;)

& Thus: (D[[Q]g—>qg] :%(D[even] _%CC[;U ([q]g—>qg)](D[odd] n 5(D[[q]g_>qg]

@ The junk gives zero after integrating (6@ (x) = 0) and after weighting
(0D,(x) = 0), i.e. cancelling k; contributions; moreover it most likely
also disappears for large p-

® Junk pieces might be collected in ‘entangled multi-hadron’ part.

UNIVERSALITY
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Bomhof, PIM, NPB 795 (2008) 409 [arXiv: 0709.1390]

(Limited) universality for TMD functions

Q| DX, pr) =3 P+ D(x) ®_(x)
<
3| @lolx, p.) =Ll _ L@l 7D (X, X)
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Outlook (work In progress)

A possible way out to include the color entanglement of different
hadrons is to include all (or more) hadrons in one soft part

In pr-averaged situation it reduces to a product of single-hadron
collinear soft parts, for single-weighted case to two single-hadron
collinear soft parts, ...

This may have advantages that a single
treatment of factorization (higher order
QCD contributions) becomes feasible
The multi-hadron soft part will

most likely involve novel
multi-hadron correlations

(through color entanglement)

remnant/spectator

remnant/spectator

v'x)p>

OUTLOOK
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Conclusions

B Transverse momentum dependence, experimentally
important for single spin and azimuthal asymmetries,
theoretically challenging (consistency, gauges and gauge
links, universality, factorization)

m For leading integrated and single-weighted functions
factorization is possible, but it requires besides the normal
‘partonic cross sections’ use of ‘gluonic pole cross sections’
and it is important to realize that g.-effects generally come
from all partons

m It is still an open issue how to achieve factorization into hard
partonic part including its colorflow and a set of (gauge-link
dependent, possibly multi-hadron correlating) TMDs

(ongoing work with Ted Rogers).

Relevant for past, present and future experiments
(RHIC, COMPASS, JLAB, JPARC, GSI, LHC)

CONCLUSIONS
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