Jet quenching and energy loss models at RHIC

Jiangyong Jia
Stony Brook University and BNL

- Leading particle observables
- Full jet and hard-soft correlation observables
Jet-medium interaction

- Learn about energy loss mechanism
 - Probe the effective DOF and transport properties of medium

- Interested in
 - Leading parton energy loss distributions: \(P(\Delta E) \)
 - Leading particle observables, \(R_{AA}, v_2, I_{AA} \) etc.
 - Parton shower and medium response:
 \[
 \frac{dN^g}{d\omega d^2k_{\perp}}
 \]

Correlation and full jet observables

Parton shower
Medium response
Leading particle
De-convolution, De-convolution, De-convolution

“Calibrated” input

Geometry

physics

Fluctuating, varying L

measured observables

Steeply falling spectra

Initial state effect

Ambiguity with medium

Varying definitions

7/6/2011
Leading particle observables

- Leading single particle observables: R_{AA}, v_2
- Leading hadron-hadron correlation observables: I_{AA}, V_{2}^{IAA}

\[
R_{AA} \quad L_1 \quad \left(\propto \frac{1}{p_T^8} \right) \quad L_2
\]

\[
I_{AA} \quad L_1 \quad \left(\propto \frac{1}{p_T^n}, n < 8 \right) \quad L_1
\]

\[
V_{2} \quad R_{AA}(\Delta \phi) \quad L_1 \quad L_2
\]

\[
V_{2}^{IAA} \quad I_{AA}(\Delta \phi) \quad L_1 \quad L_2
\]
How to study quenching via leading particles?

- p_T dependence, \sqrt{s} dependence, centrality and collision species dependence of given observable (e.g. R_{AA}).

 Sensitive to all ingredients

- Multiple observables of the same probe

 De-convolute the geometry and input spectral shape.

- Varying the probe

 Changing interaction strength
p_T dependence of R_{AA}

- Increase of R_{AA} vs p_T is a generic feature of radiative ΔE-$\log(E)$ or \sqrt{E}

- Complicated by the cold nuclear effects at RHIC and lack of p_T lever arm
p_T and \sqrt{s} dependence

- Increase of R_{AA} vs p_T is a generic feature of radiative energy loss $\Delta E \sim \log(E)$ or \sqrt{E}

- Complicated by bigger CNM at RHIC, which is compressed in small p_T range. Complicates the energy scan of jet quenching at RHIC.

- Clear advantage of going to higher beam energy

Cronin effect, PDF, CNM energy loss etc, higher twist effect…
p_T and \sqrt{s} dependence

- Increase of R_{AA} vs p_T is a generic feature of radiative eloss $\Delta E \sim \log(E)$ or \sqrt{E}
 - Complicated by bigger CNM at RHIC, which is compressed in small p_T range
 Complicates the energy scan of jet quenching at RHIC.
 - Clear rise with p_T at higher beam energy \Rightarrow soft-hard transition around 7 GeV
p_T and √s dependence

- Increase of R_{AA} vs p_T is a generic feature of radiative eloss $\Delta E \sim \log(E)$ or \sqrt{s}
 - Complicated by bigger CNM at RHIC, which is compressed in small p_T range
 - Clear rise with p_T at higher beam energy \rightarrow soft-hard transition around 7 GeV
 - Better constraint on medium properties by combining RHIC and LHC results

Surprising transparency of the sQGP at LHC (WHDG). Also observed in HT (XinNian, Abjit)

Horowitz 2011
Influence of spectral shape

- RHIC: Increase of local slope $n(p_T)$ make the $R_{AA}(p_T)$ flatter.
- Situation cleaner at LHC

\[
n^h(x_\perp) \equiv \left| \frac{d \ln N_{pp}^h(p_\perp)}{d \ln p_\perp} \right|, \quad R_{AA}^h(p_\perp) \approx 1 - \frac{\langle \epsilon \rangle(p_\perp)}{p_\perp} n^h(x_\perp)
\]
Sensitivity to fixed power law shape

- A simple check: shift the power law spectra via a e^{-loss} formula

- Once overall suppression is fixed, $R_{AA}(p_T)$ not sensitive to overall magnitude of n?

 This is clear for exponential spectra (also see previous formula)
Sensitivity to fixed power law shape

- A simple check: shift the power law spectra via a eloss formula

- Once overall suppression is fixed, $R_{AA}(p_T)$ not sensitive to overall magnitude of n?

 This is clear for exponential spectra (also see previous formula)

- Same is true for a different eloss formula (but R_{AA} shape changed)

- Advantage of LHC is from increased lever arm, constant n, reduced p_T dependence of CNM (measurement needed), **but not from smallness of n!!**
Constraint of a single observable

- Not calculated from first principle, but from model dependent fit
 - Calculate R_{AA} for one parameter
 - Minimize χ^2 wrt data
- Other ingredients (parameters) are fixed by hand

\[
\begin{align*}
\text{PQM} & \quad \langle q \rangle = 13.2^{+2.1}_{-3.2} \text{ GeV}^2/\text{fm} \\
\text{GLV} & \quad dN_g/dy = 1400^{+270}_{-150} \\
\text{WHDG} & \quad dN_g/dy = 1400^{+200}_{-375} \\
\text{ZOWW} & \quad \varepsilon_0 = 1.9^{+0.2}_{-0.5} \text{ GeV/fm}
\end{align*}
\]
Constraining P(ΔE) from \(R_{AA} \)

- \(R_{AA} \) alone cannot constrain \(P(\Delta E) \).

T. Renk hep-ph/0607166
See also 0711.1030
Combining multiple observables

- Multiple observables of the same probe allow us to de-convolute the geometry and input spectral shape.
Combining R_{AA} and I_{AA}

- Better constraint on q in a given model.
- Expose limitations of the model, i.e. ASW tends to predict smaller I_{AA} and larger R_{AA}.

Similar comparisons done for other models, see also T. Renk talk in QM2011

7/6/2011
Combining R_{AA} and γ-h I_{AA}

- Theory has been tuned to R_{AA}.
- Current error is too large to unfold $P(\Delta E)$, probably this is also true for h-h I_{AA}.
Combining R_{AA} and v_2

- In general, pQCD models under-shoots the v_2 in 6-10 GeV region
pQCD calculation is applicable only at $p_T > 10$-12 GeV?
Correlations between the R_{AA} and v_2

- Present experimental data as direct correlation between observables
 - As function of centrality, e.g. R_{AA} vs v_2
- R_{AA} vs v_2/ε is better: stronger suppression \Rightarrow larger v_2/ε
 - Disentangle geometry, spectral shape and L dependence.

![Diagram of R_{AA} vs v_2 and v_2/ε](image)
At high trigger and assoc. p_T, $I_{AA} > R_{AA}$

- away-side input spectrum harder than single inclusive hadron → smaller suppression for same amount energy loss.

See discussion of trigger bias in Renk 1106.1740
Correlations between R_{AA} and I_{AA}

- Calculation without (left) and with (right) spectral shape taken into account
 - Pure absorption picture (left): $R_{AA} < I_{AA}$.
 - Including flatter spectral shape for PTY (right): $R_{AA} > I_{AA}$.

R_{AA} and I_{AA} correlation has additional sensitivity to L dependence!

7/6/2011
Varying the probes

- Significantly change the jet-medium interaction but with same geometry

PHENIX Au+Au (central collisions):
- Direct γ
- π^0 Preliminary
- η
- GLV parton energy loss ($dN^0/dy = 1200$)

Heavy quark suppression puzzle

- Remain unsolved, need direct separation of c and b mesons

Wicks et al., NPA784, 2007
Updated calculation including dynamical scattering potential, and high order opacity corrections etc…

- Split between heavy and light at $p_T<10$ GeV at RHIC remains, however Djordjevic 1105.6082 claim otherwise
- The hierarchy of ordering strongly depends on p_T & \sqrt{s}

The importance of experimentally isolating and observing charged heavy mesons cannot be overstated since the mass splitting between c and b jets is a particularly robust prediction of pQCD in a deconfined QGP medium.
Part II
Full jet and hard-soft correlation observables
Parton shower and medium response

- Full jet observables: jet and di-jet, FF, j_T etc.

 Systematic study of jet yield and jet shape

- Correlation observables: hard-soft correlation such as $h-h$, $\gamma-h$, and jet-h.

 Systematic study of jet modification at large angle and low p_T.

Leading particle

Parton shower & medium response
Smaller jet definition produces more suppression?

Approaching the R_{AA} of single particles?
LHC jet R_{cp} not changing with cone size??

Difference of $\text{d}E/\text{d}x$ between soft (RHIC) and hard jet (LHC)?
Or due to different spectra shape?

B. Cole QM2011
Relation between R_{AA}^{jet} and R_{AA}

- R_{AA}^{Jet} depends on jet shapes in both AuAu and pp.
- Medium modification can lead to complicated feeding and feedout.

\[\Delta E = \int \omega d\omega dk^2_\perp \left[f_g(\omega, k^2_\perp, t_i) - f_g(\omega, k^2_\perp, t_f) \right] \]
\[+ \int \omega d\omega dk^2_\perp dt \frac{dN_{med}^g}{d\omega dk^2_\perp dt} + \int_{t_i}^{t_f} \hat{e}(t) dt. \] (9)

Qin Muller 1012.5280

Radiative

Collisional

Leading parton e-loss

e.g. leading hadron unmodified, but soft fragments to large angle: $R_{AA}^{jet} < R_{AA} = 1$
- ATLAS Jet R_{cp} seems to agree with CMS single R_{AA} at high p_T
- ATLAS Jet R_{cp} seems to agree with CMS single R_{AA} at high p_T
- But CMS single R_{AA} above 50 GeV has little centrality dependence
Compare R_{AA}^{jet} with R_{AA}

- ATLAS Jet R_{cp} seems to agree with CMS single R_{AA}
- But CMS single R_{AA} above 50 GeV has little centrality dependence
- Similar observation seem in ALICE, but also a change in magnitude
Theory calculations on full jet observables

- **Qin and Muller 1012.5280, Qin QM 2011 talk**
 - HT formulism, elastic and radiative, rate equation for feedin and feedout
 - Schematic modeling of geometry.
 - Toy jet finding without fluctuation
 - Only calculated di-jet asymmetry A_j. No jet and single R_{AA}

- **Lokhtin, Belyaev and Snigirev 1103.1853**
 - PyQuen MC model (BDMS), elastic and radiative, simplistic parameterization of radiation angular distribution. collisional knockout
 - Toy jet finding without bg fluctuation
 - Simultaneous description of single R_{AA} and A_j. No Jet R_{AA}.

- **Young, Schenke, Jeon and Gale 1103.5769**
 - MARTINI MC model (AMY), elastic and radiative, ideal hydro
 - Anti-kt algorithm, but no EbE background fluctuation
 - Only calculated di-jet asymmetry A_j. No jet and single R_{AA}

- **He, Vitev, Zhang 1105.2566, Vitev QM2011 talk**
 - GLV formulism, elastic and radiative.
 - Toy jet finding, schematic estimation of fluctuation
 - Simultaneous description of jet R_{AA} and A_j.

Clear need for a full event by event MC generator with hydro and fluctuations! Most calculations were done for LHC, is theory community interested in RHIC?
Comparison to results at RHIC energy

- Calculation include soft fragments down to 0 p_T
 - How can one separate medium from radiation?
- CNM much stronger p_T dependence, $d+A$ measurement is crucial for RHIC future jet program.
 - Potential ambiguity in separating cold and hot nuclear effect for jet observable at NLO level

In the kinematic region of interest, $10 \text{GeV} \leq E_T \leq 50 \text{GeV}$ around midrapidity at RHIC, the EMC effect and initial-state energy loss play a dominant role. I. Vitev

7/6/2011
- Significant initial state effects for direct γR_{AA}.
 - Plus jet flavor conversion

- Significant suppression of d+Au jet R_{cp} above 15 GeV

- They complicate jet measurements at RHIC
Correlation observables

- Hard-soft correlation to capture parton shower and medium response
 - Distinction between parton shower and medium become ambiguous at low p_T and large angle on a particle by particle level.
 - But can still study the energy/momentum flow

$h-h, \gamma-h$, and jet-h correlations
- Hard-soft correlation are sensitive to parton shower and medium response.

- The excess and broadening could well be result of local heating of bulk medium by quenched jet, intrinsically non-perturbative
 - Gluon feed back cannot be the full story

- Response of jet finder (designed for vacuum jet) to this stuff not under control?
Energy/momentum flow from high p_T to low p_T.

$$D_{AA}(p_T^{assoc}) = Y_{AA}(p_T^{assoc}) \cdot p_{T,AA}^{assoc} - Y_{pp}(p_T^{assoc}) \cdot p_{T,pp}^{assoc}$$

$$\Delta B = \int dp_T^{assoc} D_{AA}(p_T^{assoc})$$

- Majority of high-p_T^{assoc} suppression is balanced by low-p_T^{assoc} enhancement for all p_T^{jet}.
Situation in A+A

matrix elements: unmodified due to high scale

final state parton shower: no general theory, only calculations for special cases
e.g. single gluon radiation spectrum in eikonal limit

initial state parton shower: found to be unmodified at RHIC except for pdf's

hadronisation: probably modified, no theoretical guidance

7/6/2011
Conclusions

- theoretical and experimental arguments for going from single-inclusive observables to jets
- raises important conceptual (and technical) issues
- theory tool: Monte Carlo generators
 - describe jets on basis of multi-particle final states
 - account dynamically for jet – medium interactions
 - versatile to explore conceptual issues
 - jet finders and entire analyses can run on MC events
 - have to rely on phenomenological modelling
- ultimately: unified description of jet & medium evolution
- expect major progress in next years
- and fruitful interaction between experimentalists and theorists
Summary

- **Leading particle observables to probe leading parton energy loss**
 - We are able to constrain $<\Delta E>$ thus $<q_{\text{hat}}>$ for given model setup
 - We are not yet able to obtain $P(\Delta E)$ without a priori assumed function form
 - Need to unfold influence of spectral shape, CNE, medium geometry & evolution, and hadronization, and address conceptual issues of pQCD.
 - Precision p_T and \sqrt{s} dependence (compare with LHC);
 - Simultaneous description of multiple observables;
 - Vary the energy loss processes with different probes;

- **Full jet and hard-soft correlation observables to probe the parton shower and medium response.**
 - Observed jets show a relatively unmodified core and a broad and soft corona.
 - So far no clear indication (yet) advantage for leading parton energy loss?
 - Clear energy/momentum flow from high p_T to low p_T, boundary at 2 GeV
 - Full jet at RHIC need to properly address CNM and kinematic constrains
 - Need precision $p+p$ and $d+Au$ run to accompany jet program at RHIC
 - Theory side: need to develop MC models (for jet) and have unified description of jet and medium evolution (scale separation)– more difficult at RHIC
Is pQCD applicable 3-10 GeV?

- Jet production dominates at $p_T > 2-3$ GeV
- But spectra, v_2 and hadron chemistry suggests jet and medium difficult to separate up to 7-10 GeV (similar results from RHIC)
- Can one assume breaking of pQCD to depend on species? (π but not p)
 - Recombination and flavor conversion etc
Where pQCD calculation can be trusted?

Non-pQCD effects only grows to lower \sqrt{s}
Complicates study the onset of jet quenching at RHIC via energy scan
Nuclear parton densities

\[R_i^A(x, Q^2) = f_i^{p/A}(x, Q^2)/f_i^p(x, Q^2) \]

poorly constrained experimentally

Assuming collinear factorization:

\[R_{AA}(p_\perp) \approx R_i^A(x_\perp, p_\perp^2) \times R_j^A(x_\perp, p_\perp^2) \]

- Dramatic uncertainties at low \(p_\perp^2 \) and small \(x_\perp \approx 2p_\perp/\sqrt{s} \)
- Better under control at larger \(p_\perp \), say \(p_\perp \gtrsim 10 \) GeV

Francois Arle (LAPTH) Quenching from RHIC to LHC Quark Matter 2011 10 / 36
Influence of Low-x to suppression

K. L. Tuchin

\[R_{A}(p_T) \]

\[\sqrt{s} = 200 \text{ GeV} \]

\[\sqrt{s} = 5.5 \text{ TeV} \]

\[p_T \text{ (GeV/c)} \]

\[R_{pA} \]

Kopeliovich 2002

Pions (0-20%)

7/6/2011
- Weak cone size dependence at high p_T
- Some dependence on coupling constant,
- Some CNM effect (PDF and eloss)!