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QCD phase diagram (a sketch)
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® Models (and lattice) suggest the transition becomes 1st order at some u 5.

® Can we observe the critical point in heavy ion collisions, and how?

OCD critical point and observables — p. 2/15



Critical point(s) in known liquids

Most liquids have a critical point (seen, e.g., by critical opalescence).

Water:
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Does QCD “perfect liquid” have one?
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What do we need to discover the critical point?
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® Experiments: RHIC, NA61/SPS, FAIR/GSI, NICA.

® Better lattice predictions, with controllable systematics.

® Sensitive experimental signatures.
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Critical fluctuations: theory

9
Q(oy) Consider an observable such as,
1 >
e.g., oy = [y 0, where o ~ ).
H< pcp

, -1 Einstein, 1910:
7 vt ~ (&) P(oy/) ~ number

v of states with that oy,
5 l.e., eS, or e_Q/T

1= pcp (Q//)—l — 00

large equilibrium fluctuations

p > pep

® Why does CP defy the central limit theorem?

Because, correlation length ¢ — oo. This is a collective phenomenon.

The magnitude of fluctuations (o) ~ £2.
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Fluctuation signatures

Experiments measure multiplicities N, N,, ..., 10 FAarmi 200 eV e o
mean pr, etc. %105°-4<|§;:g;§<eev’°);::?m* 38;822
These quantities fluctuate event-by-event. Egizs *. ]
® Fluctuation magnitude is quantified by e.g., gloz -
((ON)*),((9pT)*). 2o
1R S L

What is the magnitude of these fluctuations 20 Netproton @iy

near the QCD C.P.? (Rajagopal-Shuryak-MS, 1998)

Universality tells us how it grows at the critical point: ((N)?) ~ &2.

Magnitude of £ is limited < O(2-3 fm) (Berdnikov-Rajagopal).

“Shape” of the fluctuations can be measured: non-Gaussian moments.
As ¢ — oo fluctuations become less Gaussian.

Higher cumulants show even stronger dependence on &
(PRL 102:032301,2009):

(BN)") ~ €7, ((BN)") = 3((ON)*)" ~ ¢

which makes them more sensitive signatures of the critical point.
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Higher moments (cumulants) and¢

® Consider probability distribution for the order-parameter field:
Plo] ~ exp{—-Q|o]/T},
2

s |1 o, My 2 A3 3 M 4 o
Q—/dx{z(Va) 20+30—|—40 +...] . = &=m,

® Moments (connected) of g = 0 mode oy = [d’z o(x):
Ko = <0‘2/> —VTE&*, K3 = (0%}) — 2V T? N\5 €%

ke = (0v)e = (ov) — 3(op ) = 6VT? [2(X38)* — A\a ] €°.

® Tree graphs. Each propagator gives £2.

e S WK

® Scaling requires “running” Az = X\sT(T€)~%/2 and Ay = M\ (T€)~ y

~

ks = (ow) = 2VT? 2 X3 €7 ka=6VT?[2(Xs)® — s €.
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Moments of observables

® Example: Fluctuation of multiplicity is the fluctuation of occup. numbers,

SN = Zp Snp.

Any moment of the multiplicity distribution is related to a correlator of on,:

3
kar = ((ON)?) = S:pl S:m S:pg (6np,0Np,oNps) , where 5 =V [ éﬂf)”:j.

9 np fluctuates around n,(m),
which also fluctuates: ém = gdo, i.e.,

onp = dny + %géa.
- 2)3 ( 9 )3 U1 Vps Vps
V2T \m3 TYp1 VP2 Vps

02 = fip(1£7p), vp = (dEp/dm)"]

Similarly for ((6N)*)..

<5np1 OMpy 0Ny >a

3
® Since ((6N)?) scales as V' we suggest w3 (V) = <(5%) ) which is V°.
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Energy scan and fluctuation signatures: notes

1st order
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® Higher moments provide more sensitive signatures.

® As usual, value comes at a price:
® Harder to predict — more theoretical uncertainties.
$ Signal/noise is worse for higher moments.

® Butone can, e.g., combine various higher moments to optimize or eliminate
uncertainties.
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Using ratios and mixed moments

Athanasiou, Rajagopal, MS (2010)
The dominant dependence on ug (i.e., on /s) is from
two sources & and ny, €.9., Kap ~ A3 g £45n3,
® ¢(up) has a peak at up = pgte?,
critical

® np ~el's /T determines the height of the peak;
® other factors: g§ and A3 depend on u weaker.

Leading dependence on p%'*'“®! can be cancelled in ratios. E.g.,

2
Kap [ Nx ~  3.45
~ A
N, (Np> 39p &

Unknown/poorly known coupling parameters g, or g. can be also cancelled
in ratios. E.g., no uncertainties in these ratios

2 3 4
/434p Kor /i4p K3
- - o = =
K’Qp Kan K’3p R47r

when critical fluctuations dominate. They are 1.

Mixed moments allow more possibilities. E.g.,

2
’{’2p27r

RapRar

Mixed moments have no trivial Poisson contribution.
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Experiment (pre-QM)
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(1630'2 = /434/%2 ~ W4 If Ko = N)

No critical signatures seen at those values of up.
Consistent with expectations that ¢%'*®! > 200 MeV.

What is happening at /s = 19.6 GeV? Low statistics.
Large positive contribution to Poisson is excluded, but large negative — is not.
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Negative kurtosis?

® Could the critical contribution to kurtosis be negative? (MS, arxiv:1104.1627)

(SN)Ye = (N + (o). (%/pﬁy o

Tp
(ov)e = 6VT?[205 — Ma] €.

® On the crossover line A5 = 0 by symmetry, while A4 &~ 4. > 0.

» P(Uv)Z A —>M

Thus (o7). < 0 and ws(N) < 1 on the crossover line. And around it.

® Universal Ising eq. of state: M = RP0,t = R(1 — 0?), H = RP°h(6)

here k4 is ka(M) = (M*4),
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Implications for the energy scan
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Implications for the energy scan
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® If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.
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Implications for the energy scan
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® If the kurtosis stays significantly below Poisson value in 19 GeV data, the
logical place to take a closer look is between 19 and 11 GeV.
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QM notes

#& Higher Moments of Net-Protons

Critical point:

Observations:
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Correlation length and Susceptibilities diverge

Long wavelength or low momentum number

fluctuations. Distributions are non-Gaussian
H|g her moments: M. A. Stephanov, PRL 102 (2009) 032301

Measure of non-Gaussian nature

Proportional to higher powers of §

Kurtosis x Variance ~ %9/ [¢?)]

Skewness x Sigma ~ [}/ [x?)]

Product of moment - Volume effect cancels

Net-protons: Y. Hatta et al., PRL 91 (2003) 102003
~ reflects net-baryons - conserved quantity
Neutrons immaterial due to isospin

blindness of ¢ field

Deviation from Poissionian expectations
from 39 GeV and below

Bedanga Mohanty 17

® Potential sources of baseline shift (from Poisson) at high baryon density:
® Fermi statistics: ws ~ 1 — 7(np), (small effect, but grows with up).
$ O(4) critical line (Friman-Karsch-Redlich-Skokov).
$ Baryon number conservation?
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Concluding remarks

® Critical point is a special singular point on the phase diagram, with unique
signatures. This makes its experimental discovery possible.

® [ocating the point is still a challenge for theory.

® The search for the critical point is on. -We-are-waitirg-fer RHIC results at
wp > 200 MeV are just in!

® |[f kurtosis stays significantly below Poisson value at /s = 19 GeV, then the
critical point could be close, to the right, on the phase diagram.
Then: /s = 15 GeV?
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