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A Revolution: “Photonic” Structure of Matter

1897  Discovery of electron
1909 Atom/Nucleus
1913  First Quantum Model of Atoms

1926 Modern Quantum Model of Atom
1927 Quantum field theories

1932 Quantum mechanics as the theory
of linear operators

1947  Lamb shift = harbinger of modern
QED

>1947 Quantum electrodynamics (QED)

~2004 9-2: au(exp) = 11 659 208(6) x 107'° (0.5 ppm)
au(SM) = 11 659 181(8) x 10719 (0.7 ppm)
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A Revolution: “Photonic” Structure of Matter




Next Frontier: “Gluonic” Structure of Matter

More Questions than Answers:

How do we understand the visible matter in our universe in
terms of the fundamental quarks and gluons of QCD?

e Confinement of color, or why are there no free quarks and
gluons at a long distance?

e How do quarks and gluons form color neutral hadrons?
e What is the quark-gluon structure inside a hadron?

e How to understand the spin of a hadron?

e What is the physics behind the QCD mass scale?

The key to the answers is the Gluon
e |t represents the difference between QED and QCD



Understanding QCD ?

Locp = q(iv"0, — m)q — g(qy*Tuq) A% — 3G, GHY

* “"Emergent” Phenomena not evident from Lagrangian

» Asymptotic Freedom
» Confinement
» Phases of QCD (T>0, ug > 0)



Understanding QCD ?

Locp = q(iv"0, — m)q — g(qy*Tuq) A% — 3G, GHY

* “"Emergent” Phenomena not evident from Lagrangian

» Asymptotic Freedom
» Confinement
» Phases of QCD (T >0, uyg > 0)

e Gluons & their self-interaction

» Determine essential features of
strong interactions

» Dominate structure of QCD vacuum
(fluctuations in gluon fields)

» Responsible for > 98% of the visible

mass in universe G. Schierholz
Action density in 3q system




Understanding QCD ?

Locp = q(iv"0, — m)q — g(qy*Tuq) A% — 3G, GHY

Cannot “see” the glue in the low-energy world

Despite this conjectured dominance,
properties of gluons in matter remain largely
unexplored

o |

= Experiments

(fluctuations in gluon fields)

» Responsible for > 98% of the visible

mass in universe G. Schierholz
Action density in 3q syste




How to Study Gluons in Matter ?

Hadron-Hadron
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e Test QCD

* Probe/Target interaction
directly via gluons

e | acks the direct access to
parton kinematics

* Probe has complex structure



How to Study Gluons in Matter ?

Hadron-Hadron Electron-Hadron (DIS)
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e Test QCD e Explore QCD & Hadron

* Probe/Target interaction Structure
directly via gluons * |Indirect access to glue

e Lacks the direct access to e High precision & access to
parton kinematics partonic kinematics

* Probe has complex structure * Probes partons w/o disturbing

them or interfering with their
dynamics



How to Study Gluons in Matter ?

Hadron-Hadron Electron-Hadron (DIS)
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e Test QCD e Explore QCD & Hadron
* Probe/Target interaction Structure
directly via gluons * |Indirect access to glue
e Lacks the direct access to e High precision & access to
parton kinematics partonic kinematics
* Probe has complex structure * Probes partons w/o disturbing
them or interfering with their
dynamics

Both are complementary but for precision = ep, eA



How to Study Gluons in Matter ?
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hi  “Scattering of protons on protons
is like colliding Swiss watchesto | 1
find out how they are build.”
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The Electron lon Collider

e US initiative driven by the QCD community in NP
e Colliding
» Electrons up to 20 (30) GeV
» Hadrons
@ protons up to 250 GeV
@ ions up to Au/U at 100 GeV
» with unprecedented luminosities (> 100x Hera)
e Unique
» High energy eA collisions
» Polarized beams: efp1



EIC Science Case




EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?
» Physics of Strong Color Fields (Saturation/non-linear QCD)
» Study the nature of color singlet excitations (Pomerons)
» Test and study the limits of universality (eA vs. pA)



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?

» What is the nature of the spin of the proton?
» What is the Three-Dimensional Spatial Landscape of Nucleons?



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?

e \What governs the transition of quarks and gluons into pions
and nucleons?

» How do fast probes interact with the gluonic medium?
» Mechanism of fragmentation?



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?

e \What governs the transition of quarks and gluons into pions
and nucleons?



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?

e \What governs the transition of quarks and gluons into pions
and nucleons?

e Electroweak Physics (studies underway)

» Parity Violating deep inelastic scattering (PVDIS)
» Lepton Flavor and Number Violation



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e \What is the internal landscape of the nucleons?

e \What governs the transition of quarks and gluons into pions
and nucleons?

e Electroweak Physics (studies underway)



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

Required Measurements:
» Momentum distribution of gluons
» Spatial distribution of gluons




Deep Inelastic Scattering (DIS)

o(k) Resolution power (“Virtuality”):
\ Q' =—¢" =—(k—FK)
\ Ge /
E Q° = 4E.E/ sin’ (%)

Inelasticity:
y:@—l—E—/COS (9/>
X(p’) pk Ee 2
p fraction of struck quark
Q°  Q°
2pq sy

Pp)

0" 4mal, y? !
2d0’ 10’ (1 Y+ F,(x,0%) F(XQ)]

quark+anti-quark / gluon momentum

momentum distributions distribution




F2. The Key Structure Function
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F2: The Key Structure Function
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F2: The Key Structure Function
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F2: The Key Structure Function
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F2: The Key Structure Function
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Quark and Gluon Distributions

Structure functions allows us to extract the quark q(x,Q2) and
gluon g(x,Q?) distributions.
In LO: Probability to find parton with x, Q2 in proton

10



Quark and Gluon Distributions

Structure functions allows us to extract the quark q(x,Q2) and
gluon g(x,Q?) distributions.

In LO: Probability to find parton with x, Q2 in proton
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Quark and Gluon Distributions

Structure functions allows us to extract the quark q(x,Q2) and
gluon g(x,Q?) distributions.

In LO: Probability to find parton with x, Q2 in proton

| x=6.32 105
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x=0.0021
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Quark and Gluon Distributions

Structure functions allows us to extract the quark q(x,Q2) and
gluon g(x,Q?) distributions.
In LO Probablllty to flnd parton Wlth X, Q2 in proton

i i
- —— HERA-I PDF (prel.) Q? = 10 GeV2 ]
- I experimental uncertainty

0.8- | | model uncertainty |

- HERA Structure Functions Working Group
| Nucl. Phys. B 181-182 (2008) 57-61
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Quark and Gluon Distributions

Structure functions allows us to extract the quark q(x,Q2) and
gluon g(x,Q?) distributions.
In LO: Probability to find parton with x, Q2 in proton

20— ‘

‘ ‘ T T
"~ —— HERA-I PDF (prel.) Q2% =10 GeV
- I experimental uncertainty

16 | | model uncertainty

- HERA Structure Functions Working Group
| Nucl. Phys. B 181-182 (2008) 57-61

Proton is almost
entirely glue by x<0.1
(for Q% =10 GeV?)
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Evolving Picture of Proton

Valence Quark
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Evolving Picture of Proton

Valence Quark
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Evolving Picture of Proton

Valence Quark




Evolving Picture of Proton
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Issues with our Current Understanding

Linear DGLAP Evolution ZEUS

Scheme ¢ Q=1Gev: - 25 GeV?

° Low Q? ‘o
> G(X’ QZ) < Qsea(X, QZ) ? 21 ),
» G(x, @) <0? | ==

— ZEUS NLO QCD fit N7 -

12



[ tot. error (og fixed)

— ZEUS NLO QCD fit
tot. error (ag free)
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ZEUS, PRD 67, 012007

Issues with our Current Understanding

Linear DGLAP Evolution

Scheme

e Low Q2

» G(x, Q%) < Qsea(x, Q?) ?

» G(x, Q%) <07?

e Large Q2

catastrophe”

» G rapid rise violates unitary bound

» built in high energy

12



Issues with our Current Understanding

. . \ Q A _ -
Linear DGLAP Evolution 20 Koo, ) — ZEUSNLOQCDH
B ‘%\";, N \‘0,‘ tot. error (ag free)
SChe me ‘g‘;\t;:t\?,” \““ [ tot. error (ag fixed)
SN 8\ EEE uncorr. error (o fixed)

° Low Q?
» G(X, Q?) < Qsea(x, Q?) ?
» G(x, Q%) <07?

e Large Q2
» built in high energy “catastrophe” |
» G rapid rise violates unitary bound — e
= A X

Linear BFKL Evolution Scheme = |
» Density along with 0 grows asa > g @

power of energy § I BrKL
» Can densities & o rise forever? g @ DGLAP
» Black disk limit: Ototal < 2 1 R? 5

In 'Az >In Q?



Issues with our Current Understanding_

Linear DGLAP Evolution 20 — ZEUSNLOQCD T
Sche~=~— — %f \ c°)

. LOV\{ Somethlng S wrong:
» G Gluon density is growing too fast

» G = Must saturate (gluons recombine)

* Lar¢ What’s the underlying dynamics?
» built

» Grg Strong hints that our current understanding
of QCD is incomplete.

\d)

- ‘// _

Linea . :
» Derl Low-x realm of the hadronic wave function
!

PO i require a Complete new approach

y Canoernsmes o TseTorever——
» Black disk limit: Ototal < 2 1 R?

—_—

L] T Q2
2
In A3cp 0

non-perti




Saturation/Color Glass Condensate

In transverse plane: nucleus/
nucleon densely packed with
gluons

McLerran-Venugopalan Model:

e Weak coupling description of the
wave function

e Gluon field Ay~1/g = gluon fields
are strong classical fields!

e Most gluons kr ~ Qs

13



Saturation/Color Glass Condensate

In transverse plane: nucleus/ XA
. —
nucleon densely packed with < reqioa o0 n Q%(v)
gluons >
C
ke
(@)}
McLerran-Venugopalan Model: : BIIIMWLK
e Weak coupling description of the £ @
wave function E
. . £ { BFKL
e Gluon field Ay~1/g = gluon fields Q
are strong classical fields! 5 @M
e Most gluons kr ~ Qs | -
In AScp InQ
Og ~ 1 Og < 1

Non-Linear Evolution:
e At very high energy: recombination compensates gluon splitting
e Cross sections reach unitarity limit

e BK/JIMWLK: non-linear effects = saturation
» characterized by Q. (x,A)

» Wave function is Color Glass Condensate in IMF description 3



Saturation/Color Glass Condensate

In transverse plane: nucleus/
nucleon densely packed with
gluons

In 1/x

In Q3(Y)

Y =

McLerran-Venugopalan Model: BKAJIMWLK

e Weak coupling description of the
wave function

e Gluon field Ay~1/g = gluon fields
are strong classical fields!

e Most gluons kr ~ Qs

(Xs~1 as<<1

Non-Linear Evolution:
e At very high energy: recombination compensates gluon splitting
e Cross sections reach unitarity limit

e BK/JIMWLK: non-linear effects = saturation
» characterized by Q. (x,A)

» Wave function is Color Glass Condensate in IMF description 3



Raison d'étre for e+A

Scattering of electrons off nuclei:
Probes interact over distances L ~ (2m,x)"
For L > 2 R, ~ A3 probe cannot distinguish

between nucleons in front or back of nucleon
Probe interacts coherently with all nucleons

“Expected”

1/3
Nuclear Enhancement Factor AN2 ) A
(Pocket Formula): (O, )" =cQ; "

Enhancement of Q¢ with A = non-linear QCD regime
reached at significantly lower energy in nuclei

14



eA: Key to Studying Saturation

Electron-lon Collider (EIC)
* Instead extending x, Q reach 1o Armestostal. PRL
. - 94:022002; Kowalski,
= Increase (s i
* More sophisticated analyses :

(constrained by data)
confirm pocket formula

Kowalski, Lappi and
Venugopalan, PRL
100, 022303 (2008);

Q* (GeVz)

| IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| 1 1111
0.1 5
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L Kowalski, Lappi and
Venugopalan, PRL

eA: Key to Studying Saturation

Electron-lon Collider (EIC)
* Instead extending x, Q reach 1o Armestostal. PRL
. - 94:022002; Kowalski,
= Increase (s i
* More sophisticated analyses :

(constrained by data)
confirm pocket formula

Q* (GeVz)

e Strong hints of saturation
from RHIC: x ~ 103 in Au

® p: No hints at Hera up to
x=6.32:10°, Q? = 1-5 GeV? 0.4 Lol 1. el il vl
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eA: Key to Studying Saturation

Electron-lon Collider (EIC)

* |Instead extending x, Q reach
= increase Qs

* More sophisticated analyses
(constrained by data)
confirm pocket formula

e Strong hints of saturation
from RHIC: x ~ 103 in Au

* p: No hints at Hera up to
x=6.32-10~, Q% = 1-5 GeV?

Finding RHIC and Hera
& Qs scalings consistent

Q* (GeVz)

10 =

0.1 | IIIIIII| 1 11 IIIIIII| | IIIIIII| | IIIIIII| 1 1111

15



Measurements & Techniques

e Gluon Distribution G(x,Q?)

» Scaling violation in F2: §F2/8InQ?
@ day 1 measurements (inclusive DIS)

» FL ~ xG(x,Q2)
® requires running at wide range of Vs

» 2+1 jet rates
@ sensitive dominantly to large x

» Diffractive vector meson production ([xG(x,Q2)]?)
@ most sensitive method

e Space-Time Distribution
» Exclusive diffractive VM production (J/y, ¢, p)atQ ~ 0
(photoproduction)
@ Gluonic form factor of nuclei

16



EIC Science Case

e \What is the nature and role of gluons and their self-
interactions (eA, ep)?

e What is the internal landscape of the nucleons?

e \What governs the transition of quarks and gluons into pions
and nucleons?

e Electroweak Physics (studies underway)

17



EIC Science Case

e What is the internal landscape of the nucleons?

Required Measurements:
» Exclusive and Semi-inclusive Measurements
» Polarized beams: etpt etHe3t (polarized n!)




Nature of Spin of the Proton ?

Is the proton looking like this?

Longitudinal Helicity Sum Rule:

Gluon spin
1 1 ~ =
§h:2q:§Sq+ S, +zq:Lq+Lg (IMF only)

——— ~~

Total u+d+s Angular momentum
quark spin 18




Nature of Spin of the Proton ?

Is the proton looking like this?

Longitudinal Helicity Sum Rule:

Gluon spin

1 1 =
ihzijis(ﬂr Sy +zq:Lq+Lg (IMF only)

——— ~~

Total u+d+s Angular momentum
quark spin

18



What Do We Know? NLO Fits to World Data

0.4 . 0.4
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0 0
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World Data from DIS, SIDIS, pp (incl. Hermes, Compass, RHIC) "



What Do We Know? NLO Fits to World Data

DSSH: D. De Florian et al. arXiv:0804.0422
Au, Ad, Au Ad As Ag AY
DSSV |0.813 [-0.458 |0.036 |[-0.115 |-0.057 |-0.084 |0.242

Big questions:
e AG = JAg(x) dx

» no measurements below ..~
X ~ 510 e

e How do we access Lqand .| ™
Ly in the IMF? R
: A TS —rr e .““91 : lli“% =)

[ _ _ — DSSV
004 | XAu JF xAd JF— DssV +1 xAs 3

. DSSV 2%

002 F - S Jo2

0o = ~—f S
004 | 1 I —GRsv sTD e

- GRSV VAL
n Pl

006 L ........la.... |l1.. L - ....lﬂ.. 11 1.. teaul . :
10~ 10 10~ 10 1 1()" 10 1

Includes:

World Data from DIS, SIDIS, pp (incl. Hermes Compass RHIC) i



Impact of EIC: g1

0 — O-[F2(:E7 Q2)7 FL(xv Q2)7 91(377 Q2)7 92($7 QQ)]
e longitudinal polarization probes mainly g,
e g1 has partonic interpretation like F; but now in terms of pol. PDFs

dg1

2

20



Impact of EIC: g1

0 — O-[F2(x7 Q2)7 FL(:Ev Q2)7 gl(il?, Q2)7 92($7 QQ)]
e longitudinal polarization probes mainly g,
e g, has partonic interpretation like F, but now in terms of pol. PDFs

dg1 2
| 2 X _Ag(xa Q )
d1og(Q<)
- DSy . - 1 03
xAg __ DNS = DsSVAY=l ]
--- GRSV | DSSV AY*=2% 1 02
0.1
0
- -0.1
[ GRSV maxg L ]
[ -~ GRSV ming - 105
2 -1
10 10 X 1



Impact of EIC: g1

= O'[FQ(CE, Q2)7 FL(ZC, Q2)7 gl(x'a Q2)792(x7 QQ)]

e longitudinal polarization probes mainly g,

e g, has partonic interpretation like F, but now in terms of pol. PDFs

dgi 2
A :
dlog(Q2) = A9 @)
:«",VXAg :B;ng —DSS:\/AX2=1 ]

--- GRSV

DSSV AY*=2% ]
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Impact of EIC: g1

= O'[FQ(ZU, Q2)7 FL(ZE, Q2)7 gl(xa Q2)792($7 QQ)]

e longitudinal polarization probes mainly g,

e g1 has partonic interpretation like F; but now in terms of pol. PDFs
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Impact of EIC: g1
= O'[FQ(ZU,Q2)7FL(377Q2)7 gl(maQQ)ng(waQQ)]

e longitudinal polarization probes mainly g,

e g, has partonic interpretation like F, but now in terms of pol. PDFs
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Beyond Spin: Full 3D Imaging of Proton

Generalized Parton Distributions
X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Structure functions, Proton form factors, Correlated quark momentum
quark longitudinal transverse charge & and helicity distributions in
momentum (PDF) & current densities transverse space - GPDs
helicity distributions
6ZJ. T y I SZJ' T y
IP/O XP/CQ y
+ — o N

p:—)DO

fix) piEy)
0 \ﬁkh
X
1
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GPDs = Orbital Momentum L

GPDs: HY E? HYI EY (~=pol)
® Can be studied at EIC using hard exclusive processes

* 1st moments can be calculated on lattice

* GPDs are defined in the proton rest frame (not IMF!)
e Ji's Sumrule:

% JI 4 JI = ZAq+ZLq+J9

Jd —ZAq+ZLq

1
= 5 /az(Hq + EY)dz | g

Note: No separation between Ag and Lq
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GPDs = Orbital Momentum L

GPDs: HY,E? HI E? (~=pol)
® Can be studied at EIC using hard exclusive processes

* 1st moments can be calculated on lattice
* GPDs are defined in the proton rest frame (not IMF!)

wide angle form
CBITES factors
scattering

deeply virtual

Compton
scattering
S
""" g’ .’Q
— a U
timelike bital |
Compton — orpital angular
scattering "" momentum
transverse localisation
: ‘
:‘ |t—>0
pp annihilation ~ ‘,
00 B ' |
exclusive deep inelastic
meson production scattering
deep virtual / large t PDFs
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Measurements to Constraint GPDs
e Quantum number of firlal gtate selects different GPDs:

» DVCS (y): H, E,H, E o ¢
» pseudo-scaler mesons: H, E

» vector-mesons: H, E %(S\M

* Need wide x and Q¢ range to extract GPDs
e Need sufficient luminosity to bin in multi-dimensions

10°

8
I statistical errors only

- x = 0.0025

2 10¢ (0.001 < x < 0.005) 61— ——

O T TN, mmmmeRRERSROL ¥ seemeeei "%v—'—::;' S

8 i S
s N R - +

o~ D *
a 4 > do — Bt

: 8 4+ — X €

) = dt

5 o

= o . * EIC: HE setup, 16 weeks

© Q= 26GeV’ . 2— 8<Q°<15GeV?

© B = 670+0.06 GeV> I SEs =

® Q°-106GeV’ o H1: 99/00 + 04 prelim.
102 B = 5.80+0.19 GeV
0 - - lolzl A A014 1016 0‘8 0 1 1 4 l‘lll 1 1 ' Lol ll I ' | L Ll
! 1
It [Gev?] 0 i 10° 107
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EIC Science Case

A unique opportunity for fundamental physics:

QCD Theory Relativistic

Saturation Models Heavy lon Physics
Color Glass Condensate (RHIC, LHC & FAIR)

Non-linearity 2
’  Understanding
Confinement, of Initial Conditions, N UC|ear

Valence <= Sea AdS/QCD :
Spin Structure Saturation, Gluonic Structt Structure

Energy Loss
ab initio of Nuclei, Nuclea
QCD Calculations -
& Computational : Technology Frontier
Development New Generation Examples: beam cooling,

of Instrumentatio )
Physics of Strong energy recovery linac,
Color Fields QCD polarized electron source,

Background, L-éPton Number superconducting RF
Violation oo
PDEs cavities

P Violation,

¢ Increasing Global Interest in ep/eA Facilities
» LHeC (CERN)
» EIC (BNL/JLAB)

» ENC (FAIR) e



EIC Concepts: BNL & JLAB

eRHIC = RHIC + ELIC = CEBAF +
Energy-Recovery Linac Hadron Ring

J—
/4 ot
> : \

12 GeV/c proton
booster/collider Low
ring (warm ring) Energy IP

3Figure-8 |
rings stacked —}
vertically H

60 GeVi/c proton
polarimetry collider ring
(cold ring)

Medium
Energy IP

See talk by Vladimir Litvinenko
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EIC Outlook

NSAC Long Range Plan 2007

“An Electron-lon Collider (EIC) with polarized beams has been
embraced by the U.S. nuclear science community as embodying the
vision for reaching the next QCD frontier.”
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EIC Outlook

NSAC Long Range Plan 2007

“An Electron-lon Collider (EIC) with polarized beams has been
embraced by the U.S. nuclear science community as embodying the
vision for reaching the next QCD frontier.”

* Increasing efforts at BNL & JLAB

e Concepts of eRHIC and ELIC are taking shape
» Substantial progress in machine & IR design

e Staged approach most promising path
» Much can be done already at lower energy (e.g. FL)
» Saturation physics will require full ELIC/eRHIC

e At minimum one large multi-purpose detector

e ePHENIX/eSTAR under evaluation

* Next Key Event:

» INT Workshop: Gluons and the Quark Sea at High
Energies: Sep-Nov, 2010 = Science Case for EIC
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