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Limitation of the Standard Model

• Quark and lepton family replication is not 
explained

• Gravitation is not included
• Dark matter is not understood
• Large number of free parameters – 17 

masses (9), mixing angles (4), coupling 
constants (4)

• Mass origin ?
• Higgs is not discovered yet
• Neutrinos are massless
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Test of LFC  

• LFC is experimental fact but no symmetry 
associated with it

• Neutrinos are not massless
• Many models (GUT, LRSM, Technicolor, 

Composite models, SUSY) predict LFV and 
include SM as low energy approximation

• Search  for LFV – Serch for Physics beyond the 
SM (BSM)
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Upper limits on BR of LFV processes with muons
µ+->e+ γ             1.2x10−11  MEGA  

µ+->e+ e+ e- 1.0x10−12  SINDRUM  

µ+e-<->µ-e+ 8.3x10−11 SINDRUM

µ-Ti->e-Ti  6.1x10−13 SINDRUM

µ-Ti->e- Ca* 3.6x10−11 SINDRUM

µ- Pb->e- Pb  4.6x10−11 SINDRUM

µ-Au->e-Au  1.9x10−11 SINDRUM
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Upper limits on BR of particle decay modes that 
do not conserve Lepton Flavor

τ->e γ        2.7x10−6  CLEO     τ->3µ        1.9x10−6  CLEO 

τ->µγ        1.1x10−6  CLEO   1.0x10−6  BELLE 2..0x10−6  BaBar

τ->2µe 2.7x10−6  CLEO    τ->µ2e 1.5x10−6  CLEO 

τ->3e 2.9x10−6  CLEO    Z0->µe   1.7x10−4 

K+->π+ µ e 2.8x10−11  BNL   K0
L->µe 4.7x10−12  BNL

K0
L->π0µe 4.4x10−10  Fermi   B0->µe 1.2x10−7  BaBar  

B0->τ e   5.3x10−4    CLEO B0->τ e 8.3x10−4    CLEO

Z0->µe   1.7x10−6       OPAL Z0->τ e  9.8x10−6 

Z0->µτ 1.2x10−5 
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Experimental Principle

–Low energy muons stopped in nuclear target, forming
muonic atoms

Processes occurring with stopped 

–Nuclear capture : µ- (A,Z) -> νµ (A,Z-1) 

–Three body decay in orbit

–Coherent LFV decay µ- (A,Z) -> e- (A,Z)

Signal is a single mono-energetic electron

ee ννµ µ
−− →
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Experimental Principle, continued

Rate is normalized to the  Nuclear capture rate
R = Γ (µ- N -> e- N)/Γ(µ- N -> νµ N’) 
fTi

capt = 85.3 % and µ- lifetime in Ti = 329 ns
E = mµ – Bµ - Rnucl = mµ – 1.27 - 0.12 = 104. 27 MeV

Charge exchange conversion
µ- (A,Z) -> e+ (A,Z-2)
E = (mµ −2me ) −∆Μ - Bµ - Rnucl
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Potential Background

• Beam related background may originate from 
muons, pions and electrons in the beam

• Muon decay in flight (MIF)
• Muon decay in orbit (MIO)       Main source
• Radiative muon capture (RMC)  γ-> e+e- (10-4)
• Radiation pion capture (RPC)     γ-> e+e- (2%)
• Particle scattering of the target
• Cosmic ray background
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Experimental Method 
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Intrinsic Background
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Beam Line

• Pions  produced in a 6 cm long carbon target 
by 590 MeV proton beam are injected into an 
8.3 meter long solenoidal magnet.

• Muons from π- -> µ-ν  decays inside solenoid 
backward in the cms, transported to the area

• Momentum varied by slits to a max. +/-5%
• Intensity rises with momentum and reaches 

1.2x107 µ-/s at the momentum of 88 MeV/c
with a proton beam current of 0.5A. 

• e- and π- contamination ~10% and ~3x10-6
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Spectrometer magnet
• Superconducting solenoidal magnet previously 

used at CERN ISR
• Region for particle tracking: 180 cm in length 

and 130 cm in diameter
• Weight 70 t. End rings, (6t each) produced in 

Tbilisi, Georgia 
• Magnetic field was accurately measured and 

found a 7% drop at upstream region
• Field map was used for event reconstruction 

and simulation 
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Beam counter and target
• Beam crosses CH2  moderator, plastic scint., 

and second CH2  moder. (thick: 21.5, 10, 2 mm)

• First moderator stops pions, resulting in π/µ
ratio in the target stops of ~10-7

• Beam counter used to recognize prompt bgr
and monitor beam intensity. PM signals summed 
and recorded with waveform digitizer

• Second moderator placed close to the target 
to minimize the spread in π and µ flight time 
and thus the width for prompt time  window 
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Beam counter and target, continued

• Target is made of Ti 
foils, thickness 23.8 µm

• Target is arranged 
symmetrically about the 
beam axis with x-y cross 
section resembling a 
flower with 80 petals

• Target length 300 mm 
and total mass 427 g

300mm
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Scintillator hodoscopes
• Outer hodoscope (plastic BC408) determines e- arrival 

time and starts drift time measurement
• It has 64 elements, 5 mm thick, 1500 mm len. at radial 

dist. 349 mm
• Inner hodoscope  has 32 strips, 3mm thick, 800 mm 

length, placed at r = 130 mm. 
• The goal of inner hodoscope is to recognize a bgr from 

γ-> e+e- conversions in the target
• Scintillators are viewed at both end by 3/4” PMs

(Hamamatsu R1450)
• Thickness 475 mg/cm2 , # of photoelect. 2x15/MeV
• Time resolution 0.47 ns/strip
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Cerenkov hodoscopes
• Used for triggering and recognises electrons
• Two lucite Cerenkov hodoscopes placed at both 

ends of the tracking region at r=287 mm
• Each consists of 16 modules 30 mm thickness 

and 345 mm length 
• Used 2” PMs (XP2020)
• # of photo electrons  5/cm
• Time resolution 1.4 ns
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Specification of radial Drift Chambers
• DC1                           DC2
• Drift region  37.63 - 43.65 cm           44.85 – 64.50 cm
• Gas compos.   CO2/iC4H10 (70/30)  He/iC4H10 (88/12)     
• Primary ions        120 cm-1                            30 cm-1

• drift field         800-900 V/cm       290-430 V/cm
• max drift time         6.5 µs                     18.5  µs  
• drift speed       0.83-0.93 cm/µs       1.1-1.5 cm/µs
• Lorentz angle            60                                     310 - 350

• channels in r - ϕ         384                                   96  
• channels in z        2x192 (4.4 mm)                  none
• resolution   (r – ϕ) = 150µm  (z) = 2 mm      (r – ϕ) = 4 mm 
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Trigger and data read out
• A time coincidence between a hit in inner hodo, two 

disjunct hits in outer hodo and Cerenkov signal
• Two of the hits in outer hodo have a distance between 

12 and 18 elements
• DC1 pattern in the vicinity of two hits in outer hodo

concides with pre-loaded masks, defined by simulation. 
Both inefficiencies and noise hits have taken into 
account

• Second trigger level starts digitization of PM time and 
amplitude signals. Everything is delayed by 8µs  to 
await latest DC signals. 
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Spectrometer acceptance
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SINDRUM II, 100.6 MeV electron
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Data taking and analysis 
• Measurment life time 50.4 days, 4x109 events 

were recorded with beam
• Beam intensity from BC analysis 1.15x107µ- s-1 

which corresponds to 5.0x1013 µ- passing BC
• Beam stop rate 0.616+/-0.025
• Nstop = (3.09 +/- 0.14) x 1013

• εµe
trigger = 0.751 +/- 0.005

 εΜΙΟ
trigger= 0.759 +/- 0.010
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Beam counter analysis 



V. Dzhordzhadze 38

Event Selection
• The electric charge is negative
• Trajectory starts in target
• The beam counter does not exhibits a prompt signal 
• No additional detector signals, characteristic for 

cosmic-ray background is found
• Prompt background cut 13 ns -> intensity ~107 

• Beam off data taking (44 days) to study and remove 
cosmic background

Γ (µ- Ti -> e- Ti)/Γ(µ- Ti capture ) < 2.3/ fTi
capt Nstopεµe
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Beam counter analysis, continued 
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Comparison of exper./MIO simulation
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Summary
• Increasing evidence for neutrino mixing observed 

past years indicates that generation numbers is not 
conserved, neither for quarks nor for leptons. The 
standard model needs a revision

• Observation of the Lepton Flavor Violation would give 
an unambiguous signal for a new physics beyond the 
Standard Model  

• Flavor-changing neutral currents among quarks and 
leptons would signal a much more extension to the 
model

• Proposed MECO Project to reach muon to electron 
conversion rate at -16 level will be a major 
breakthrough in understanding of basic laws of the 
nature   
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Additional Plots
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