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e The baryon puzzle at RHIC

e Recombination + Fragmentation Model

e Results: spectra, ratios and elliptic flow

e Challenges: correlations, entropy balance & gluons



Standard Model of Hadronization |
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e high p,:

» pQCD is applicable, hadronization via fragmentation é‘c 0 —
> a fast parton fragments via a color string: a — h+X ‘ &

> hadron spectrum is given by: _ dN, _jdz E dN )—
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The baryon puzzle @ RHIC |
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e where does the large proton over pion
ratio at high p, come from?

e why do protons not exhibit the same
jet- suppression as pions?

e species dependence of v, saturation?
» fragmentation yields N /N, <<1

» fragmentation starts with a single fast
parton: energy loss affects pions and
protons in the same way!
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U0 | Recombination+Fragmentation Model |

basic assumptions:

e atlow p,, the quarks and antiquark spectrum is thermal and
they recombine into hadrons locally “at an instant”:

og —>M oaq—B
> features of the parton spectrum are shifted to higher p, in
the hadron spectrum

e at high p,, the parton spectrum is given by a pQCD power law,
partons suffer jet energy loss and hadrons are formed via
fragmentation of quarks and gluons

o for exponential parton spectrum,
recombination is more effective
than fragmentation

e baryons are shifted to higher p,
than mesons, for same quark
distribution

» understand behavior of baryons!




Recombination: nonrelativistic formalism |

e use thermal quark spectrum given by: w(p) = exp(-p/T)

e for a Gaussian meson wave function with momentum
width Ay, the meson spectrum is obtained as:

dN V d’ -
t - o [ L usp-au(se o), @

d’p " (2n)°

V 2 2A°
=C w(:P 1——M ...
: (272)3[ (P)] ( TP j
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Recombination vs. Fragmentation |

Fragmentation...

h . dz
3p _.[d (272.) ,([22 ;W (R.2 z P)D,_.(2)

.. never competes with recombination for a
thermal (exponential) spectrum:

[W(P/n)]n =exp(—P-u/T) >exp(-P-u/zT)=w(P/z)

.. but it wins out at large p;, when the spectrum
IS a power law ~ (pr)2:

dN;‘Trag D P—b dN;;eC ] P—Zb



Recombination: single particle observables
e hadron spectra
e hadron ratios

.:{AA

e ¢lliptic flow
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» consistent description of spectra, ratios and R,,
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Parton Number Scaling of v, |

ein leading order of v,,

AutAu; s = 200 GeV; Mid-rapidity
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» smoking gun for recombination

» measurement of partonic v, !



Resonance v,: scaling violations |

> QGP resonances: 03| nqu3es) v 6
hadronizing QGP, no rescattering 025
Ko d,Squarks  n=2scaling L 02
> HG resonances: > 015
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. . 0.05
Kol K'+7z7 > K, n=4scaling ool r(R.):0.7
HORAELY <o TR
n 0.25 "
Key: 0.2
V, IS additive for composite particles =45
TOta!un QGP HG >
v, =r(R vy +(@A-r(RF))v; 0.05
I (P, ) is determined by experiments and 00— ?r(i)':jw
related to width of particles and cross P; (GeV)

section in the hadronic medium.
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Challenges:

e dynamical two-particle correlations
e balancing the entropy
e treatment of gluons & sea-quarks

= R.]. Fries, S.A. Bass & B. Mueller, PRL 94 122301 (2005)

= C. Nonaka, B. Mueller, S.A. Bass & M. Asakawa, PRC Rapid Communication
in print, nucl-th/0501028

= B. Mueller, S.A. Bass & R.J. Fries, Phys. Lett. B in print, nucl-th/0503003



Two-Particle Correlations: a Challenge? |

PHENIX & STAR measure associated yields in pr windows of a few GeV/c.

trigger hadron A, associated hadron B: associated yield as a function of
relative azimuthal angle
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e Recombination approach allows for two particle
correlations, provided they are contained in the
parton source distributions

e Three distinct types are conceivable: F-F, SH-F
and SS-SS

e Ansatz for SS-SS: for two mesons, use product of

correlated parton distributions:

W1234 = W, W, W, W, 1+ Z Cij

<]

» Which results in a correlated two hadron vyield:
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Recombination: Inclusion of Correlations |
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Correlations: Proof of Principle |
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» strong correlations from fragmentation, but suppressed by soft triggers

» combination of hard fragmentation and soft recombination correlations
with a fixed correlation volume is compatible with data



¢ Recombination: Entropy Puzzle

hadronization

S

o O OSQ
© o quark recombination

o O O

o o SH@

e Does recombination violate the 2nd law of thermodynamics ?
— particle number decreases drastically in hadronization via reco...
> restrict reco approach to intermediate momenta, ignore bulk...
» decay of hadronic resonances as possible solution (Greco et al.)

» need estimate of entropy at hadronization
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uw Entropy in the Hadronic Phase

1) resonance gas model: 2) final state entropy from data:
— massless particles: dS
< P o= 4450 4400
S _J36: bosons > Pal & Pratt, PLB578,310 (2004)
N 4.2 : fermions IN
ch
— massive particles: Dy 526 +2(star) = 36(sys)
Iy o STAR: PRC68, 044905 (2003)
—=35+— (T>3)
N r S ( dS/dy ) 5.64+0.6
T =T.= 170 MeV N 1.5dN_,/dy
— = 5'15 . reSONANCes a 5% increase in multiplicity due to
N ' ' rescattering in the hadronic phase

> entropy content is larger than often assumed!
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Entropy in the Deconfined Phase I

e Lattice QCD [CP-PACS with N;=6 & N=2]

mpg/my=0.65 |
‘l‘ 3 : $
¢
{
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T/T,

> entropy content of the deconfined phase near T is
strongly reduced due to interactions!

systematic uncertainties include: thermodynamic limit, continuum limit, unphysically

large quark mass...



Entropy Puzzle resolved? |

Quark Phase Hadron Phase
S/SSB ‘ S/N
2
o O OSQ S
© o0 o H
© o %9
Sy near T is strongly e S, is larger than often
reduced due to interactions. assumed.

Recombination may be compatible with the

entropy constraint after all!

* No direct comparison of the entropy content of both phases:
— Volume at hadronization ?
— Number of quarks on the lattice ?



Thermal Recombination beyond the
Valence Quark Approximation

> investigate effects of more sophisticated internal hadron structure

e use light-cone frame
write hadron wavefunction as expansion in terms of Fock-States:

\M)zjdxadxb 5 (X, + %, —1)c, (X, %, |0, (xa)c_]ﬂ(xb)>
qa(xa)qﬂ(xb)g(xc»

+| dx,dx,dx; 5 (X, + X, + X, —1)C, (X,, X, X, )
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Effects of dynamical quark mass m(Q?2):
» assumption of quasi-free partons with current quark masses ~10 MeV

valid for resolution scale Q2 > 1 GeV?
> for Q°~(nT)°~0.5 GeV? degrees of freedom likely dominated by lowest

Fock state (i.e. valence quark state)




a Egalitarian Nature of Thermal Recombination

Boltzmann approximation:

e probability of finding a quark with momentum k=xP and energy E, in a
thermal medium is given by: w, (x) ={(a(x)| p|a(x))=e™'" =e™*"T

=€
with p the thermal density matrix
o for a state with n partons one obtains:
(A(x)a0%)---| £]a06) A(%,). ) = W, (X)W, (, ). = &« o 7T
» emission probability for a single Fock state reads:
:jldx dx, 5 (X, + %, ~1)[c, (%, X )‘2<q(xa)q_(xb)‘,5‘q(xa)q(xb)>:CleP’T

qqg—jdx dx, 0%, & (X, + X, + X, ‘cz(xa,xb,xc)z<q(xa)q(xb)g(xc) X,)T(%,)a(%))=C,e™"
» combining all contributions from all Fock states, one obtains:
_ -PIT _ A—PIT
W(P)—qu_ +qug +quqq (C1+C2+C3+...)e =€

» emission probability of complex state from a thermal ensemble is
independent of degree of complexity of the structure of the state



Higher Fock States: v, Scaling Violations |

Generalization of scaling law to higher Fock states:
e assume all partons carry roughly equal momentum x~1/n,
with n, the number of partons in the Fock state

véH)(P)zZCanvz(P/nv)

e valence quark apprOX|mat|on v=1, n,=2,3 and C, 1

» scaled v, for mesons and baryons: 0.1
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Summary & Outlook |

The Recombination + Fragmentation Model:

e provides a natural solution to the baryon puzzle at RHIC

e describes the intermediate and high p, range of

» hadron ratios & spectra

> jet-quenching phenomena

> elliptic flow

> leading / next-to-leading particle correlations (work in progress)
> treatment of gluons & higher Fock states

issues to be addressed in the future:
e realistic space-time dynamics of parton source
e need improved data of identified hadrons at high p,



The End
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