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Jet quenching

Suppression of light particles at high-pt observed at RHIC.

Well described by energy loss due to medium-induced gluon
radiation

Problems: surface emission, trigger bias...
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Jet quenching

Suppression of light particles at high-pt observed at RHIC.

Well described by energy loss due to medium-induced gluon
radiation

Problems: surface emission, trigger bias...

Measure the structure of radiated particles → jets

Change the composition of the primary → heavy quarks
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Massless case
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Medium–induced gluon radiation (m=0)

Medium properties: length L,
transport coefficient q̂ ∼ µ2

λ

k2
⊥, max ∼ q̂L; κ2 ≡ k2

⊥/q̂L

Accumulated phase

ϕ =

〈

k2
⊥

2ω
∆z

〉

∼ κ2 ωc

ω
; ωc ≡

1

2
q̂L2

Rad. suppressed by coherence
ϕ . 1 ⇐⇒ κ2 . ω/ωc
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Angular distribution

The same spectrum in different variables ω/ωc, k2
t /
√

ωq̂

Heuristic argument

tform ∼
ω

k2
t

k2
t ∼ µ2 tform

λ

The transport coefficient is defined
as q̂ = µ2

λ

k2
t ∼ q̂ tform =⇒ k2

t ∼
√

ωq̂

So the radiation is suppressed for

sin θ .

√

√

q̂

ω3
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Application of the formalism

dσAA→h+X
(med) =

∑

f

dσAA→f+X
(vac) ⊗ Pf (∆E, L, q̂) ⊗ D

(vac)
f→h(z, µ2

F ) .
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[Eskola, Honkanen, Salgado, Wiedemann (2004)]

Data favors a large time-averaged transport coefficient

q̂ ∼ 5 . . . 15
GeV 2

fm
[Many other groups describe these data: Gyulassy, Levai, Vitev, Wang, Drees, Feng, Jia,
Arleo, Dainese, Loizides, Paic...]
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Centrality dependence

q̂ ∝ density
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[Dainese, Loizides, Paic (2005)]
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Opacity problem

q̂ = cε3/4 for an ideal QGP cQGP
ideal ∼ 2

We obtain [Eskola, Honkanen, Salgado,

Wiedemann (2004)]

¯̂q =
2

L2

∫ τ0+L

τ0

dτ(τ − τ0)q̂(τ) =⇒

c =
q̂

ε3/4(τ0)

2 − α

2

(

L

τ0

)α

⇒ c > 5cQGP
ideal

[taking ε(τ0) < 100GeV

fm3
, L/τ0 ∼ 10, α = 1]

Remember q̂ proportional to the density
times cross section ⇒

[Baier 2002]

The interaction of the hard parton with the medium is much stronger
than expected.
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Corona effect

The medium produced at RHIC is so dense that only particles produced
close to the surface can escape.[Muller (2003)]

[Dainese, Loizides, Paic (2004); Eskola, Honkanen, Salgado, Wiedemann (2004)]
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Corona effect

The medium produced at RHIC is so dense that only particles produced
close to the surface can escape.[Muller (2003)]

[Dainese, Loizides, Paic (2004); Eskola, Honkanen, Salgado, Wiedemann (2004)]
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Flatness of the suppression

Trigger bias

Steepness of the spectrum dσ
dpt

∼ 1
pn

t

=⇒ small z, ε
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High-pt hadrons are fragile objects – more fragile the highest the pt

[Eskola, Honkanen, Salgado, Wiedemann (2004)]
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Heavy quarks
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Vacuum radiation: Dead cone effect

sin2 θ0 = 1 − β2 =
(m

E

)2

Dead cone effect Angles smaller than θ0 ≡ m/E are suppressed in
vacuum radiation [Dokshitzer, Khoze, Troyan (1991)]

ω
dIvac

dωdk2
t

∼
1

k2
t

−→ ω
dIm

vac

dωdk2
t

∼
k2

t

[k2
t + ω2θ2

0]
2
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Vacuum radiation: Dead cone effect

sin2 θ0 = 1 − β2 =
(m

E

)

Dead cone effect Angles smaller than θ0 ≡ m/E are suppressed in
vacuum radiation [Dokshitzer, Khoze, Troyan (1991)]

ω
dIvac

dωdk2
t

∼
1

k2
t

−→ ω
dIm

vac

dωdk2
t

∼
k2

t

[k2
t + ω2θ2

0]
2
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Heavy quark energy loss

Dokshitzer & Kharzeev 2001 took θ ∼
(

q̂
ω3

)1/4

ω
dImass

med

dω
=

1
(

1 +
θ2

0

θ2

)2 ω
dIm=0

med

dω

0.2 0.4 0.6 0.8 1
x
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Medium-induced gluon radiation is reduced in the mass case =⇒
less energy loss for heavy than for light quarks.
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Medium-induced gluon radiation: massive case

More refined calculations of the double differential spectrum of heavy
quarks reveal a richer structure

[Armesto, Salgado, Wiedemann (2004)]

New phase term in the massive case:

ϕ =

〈

k2
⊥

2ω
∆z

〉

−→

〈

k2
⊥

2ω
∆z + q̄ ∆z

〉

; q̄ '
x2M2

2ω
;

[

x =
ω2

E2

]

[Similar results: Djordjevic, Gyulassy (2003); Zhang, Wang, Wang (2004)]
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Angular distribution

The angular distribution is modified
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Angular distribution

The angular distribution is modified

(vacuum)

The effect of the mass in the medium case is

Suppress radiation at large angle

Enhance (moderately) at small angle

Net effect: the energy loss is smaller in the massive case
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Energy spectrum

To compute the energy loss, the energy spectrum is needed

ω
dI

dω
=

∫ ω2

0

dk2
t ω

dI

dωdk2
t

Smaller energy loss for heavy quarks
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Influence of the mass

cω/ω
-410 -310 -210 -110 1 10

210

ω
 d

I/d
ω

0

0.1

0.2

0.3

0.4

0.001

0.01

0.05

0.1

0.3

0.5

m/E =

R = 10mult. soft

cω/ω
-410 -310 -210 -110 1 10

210

ω
 d

I/d
ω

0

0.1

0.2

0.3

0.4 3R = 10

cω/ω
-410 -310 -210 -110 1 10 210

ω
 d

I/d
ω

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
5R = 10

cω/ω
-410 -310 -210 -110 1 10 210

ω
 d

I/d
ω

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

6R = 10

R ≡ ωc L

Notice that the effect of the mass increases with the length L
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Practical applications
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Formalism

dσAA→h+X
(med) =

dσAA→f+X
(vac) ⊗ P

(

∆E

ωc
, R,

m

E

)

⊗ D
(vac)
f→h

P
(

∆E
ωc

, R, m
E

)

probability of losing ∆E due

to medium-induced radiation (R = ωc L)

In the vacuum

P

(

∆E

ωc
, R,

m

E

)

= δ(∆E)

We tuned PYTHIA to reproduce the shape
of the data from STAR on the D meson pt

distribution in dAu.
[Armesto, Dainese, Salgado, Wiedemann (2005); Same

method as in Dainese, Loizides, Paic (2004)]
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Quenching weights

In the independent gluon emission approximation [Baier et al (2001)]

P

(

∆E

ωc

, R,
m

E

)

=

∞
∑

n=0

1

n!

[

n
∏

i=1

∫

dωi

dImed(ωi)

dω

]

δ

(

∆E −

n
∑

i=1

ωi

)

exp

[

−

∫

dω
dImed

dω

]
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[Armesto, Dainese, Salgado, Wiedemann (2005)]

[tabulated in: http://www.pd.infn.it/˜dainesea/qwmassive.html]
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Geometry

q̂(ξ) = kTA(s + ξn)TB(b− [s + ξn])

ωc =

∫

∞

0

dξ ξ q̂(ξ) ; R =
2ω2

c
∫

∞

0
dξ q̂(ξ)

[Dainese, Loizides, Paic (2004); Armesto, Dainese, Salgado, Wiedemann (2005)]
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Results for RHIC
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[Armesto, Dainese, Salgado, Wiedemann (2005)]
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Surface emission with mass terms

Suppression for charm and light quarks very similar unexpected?

Remeber that mass effects small for small lenghts
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Surface emission with mass terms

Suppression for charm and light quarks very similar unexpected?

Remeber that mass effects small for small lenghts
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Influence of B mesons

The electrons measured have contributions from the decay of B
mesons

[Cacciari, Nason, Vogt (2005)]

B-meson decays dominate for pt & 5...6 GeV

The correlation between the momentum of the HQ and the electron is
very smeared
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Massive over light particle ratio
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[Armesto,Dainese,Salgado,Wiedemann 2005]

Quark vs gluon energy loss:
∆Eg = NC/CF ∆Eq,m=0

Increases RD/h

Light-particle spectrum slope
larger than massive one

Increases RD/h

charm fragmentation harder

Decreases RD/h

Heavy quark suppression of
gluon radiation (’dead-cone’)

Increases RD/h
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Extrapolations to the LHC

Extrapolation according to the expected density (q̂ ∝ density)

We take a factor 7 from Eskola et al (2000) [probably too large]
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Heavy-to-light ratios at the LHC

D/h and B/h ratios for the LHC
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Conclusions

Medium-induced gluon radiation is the standard explanation of
high-pt inclusive particle suppression.

Several trigger bias effects limit its sensitivity to the medium
properties

Study heavy quarks

Different particle composition Nc/CF = 2.25

Softer perturbative slope

Harder fragmentation

Smaller medium-induced radiation

Mass effects in agreement with RHIC data but in dangerous region

Surface emission makes the mass effect smaller

LHC will be able to measure mass effects in a large pt range with B
mesons

RHIC & AGS Users’ Meeting, BNL June 2005 HQ production and energy loss. – p.29


	Jet quenching
	
	Medium--induced gluon radiation (m=0)
	Angular distribution
	Application of the formalism
	Centrality dependence
	Opacity problem
	Corona effect
	Flatness of the suppression
	
	Vacuum radiation: Dead cone effect
	Vacuum radiation: Dead cone effect
	Heavy quark energy loss
	Medium-induced gluon radiation: massive case
	Angular distribution
	Energy spectrum
	Influence of the mass
	
	Formalism
	Quenching weights
	Geometry
	Results for RHIC
	Surface emission with mass terms
	Influence of B mesons
	Massive over light particle ratio
	Extrapolations to the LHC
	Heavy-to-light ratios at the LHC
	Conclusions

