Photons @ RHIC: Results from STAR

Marcia Maria de Moura
for the STAR Collaboration
STAR Experiment At RHIC
Introduction

Photons in A+A collisions

- Mainly, from π^0, η decays
 - Important probe in many aspects
 - In STAR, allow better statistics to higher p_T than charged pions

- Direct photons
 - Main advantage – large mean free path in the created matter
 - Produced in all stages of the collision
 - thermal photons – access to temperature (initial, hadronization)
 - High p_T photons to investigate hadron supression in A+A collisions

- Extraction of direct photon production is harder due to large hadronic decay background $\rightarrow \pi^0 (\eta)$ measurements very important
Inclusive γ and π^0 from the STAR TPC

Measurement obtained from γ conversion in TPC

Material used as γ converter:
- Beampipe
- SVT
- SSD
- Inner field cage
- TPC gas

Efficiency
- $\gamma \sim 2\%$
- $\pi^0 \sim 0.04\%$
γ reconstruction

- e^+ and e^- are selected through dE/dx
 - loose cuts are applied
 - low p_T accepted only if they do not come from collision vertex
- For the pairs, it is required a small opening angle and conversion vertex different from collision vertex
- Trajectory of reconstructed γ points back to collision vertex
Au+Au collisions at \(\sqrt{s_{NN}} = 62.4 \text{ GeV} \) - \(\gamma \) spectra

\(\gamma \) and \(\pi^0 \) – Au+Au at 130 GeV

- Error bars: statistical only
- Systematic uncertainty: 20%
- Combinatorial background has been subtracted
- Other contributions, such as \(\Lambda \) decays, were verified to be negligible

Centrality dependence
- Curves are power law fits

STAR preliminary

\(-1 < y < 1 \)

\(p_t \) (GeV/c)
Au+Au collisions at $\sqrt{s_{NN}} = 62.4$ GeV - π^0 spectrum

- Each point is the gaussian fit of the 2γ invariant mass distribution for a given p_T
- ~10 MeV width, depending on p_T
- Systematic uncertainty of 30%

Comparison of π^0 to π^+ and π^- from STAR TPC dE/dx and TOFr shows good agreement.
Correlation of large E_T photons with charged particles

- Jet studies allow further investigation of parton energy loss mechanism
- 2 particle correlations
 - probe of intra-jet (same side) and back-to-back jet (away side)
- Previous studies
 - charged particle correlations for $p_T < 6 \text{ GeV/c}$
- This Analysis
 - γ (mostly from π^0) – h^\pm correlations
 - Extends correlation energy range, due to EMC measurement of photons
d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Data set

- 3.9 M High Tower triggered events
 - EMC patch - 4 x 4 towers
 - High tower trigger - tower in a patch with the highest energy above threshold

Selections and Cuts

- Highest tower energy selected
- Isolation cut
 - No track pointing in a 3 x 3 tower patch around main tower
- Associated track – basic selection criterion used in many STAR analysis
d+Au correlations

ρ_T associated dependence

E_{trig} dependence

STAR preliminary

RHIC & AGS Annual Users Meeting –
BNL – Upton, NY - May 31, 2005
Marcia Maria de Moura
Jet properties – $< j_T >$ and $\sqrt{< k_T^{rms} >}$

- j_T - transverse momentum component of jet from jet axis
- k_T - transverse momentum component of initial parton

Correlation (Gaussian) widths

- $\sigma_N \rightarrow$ near side
- $\sigma_F \rightarrow$ far side

$$\sigma_N^2 \approx \frac{\left< E_T^2 \right> + \left< p_T^2 \right>}{2 \left< E_T^2 \right> \left< p_T^2 \right>} \left< j_T^2 \right>$$

$$\left< j_T \right> = \frac{\sqrt{\pi}}{2} \left< j_T^2 \right>$$

$$\sqrt{\left< k_T^2 \right>} \approx \frac{\left< E_T \right>}{\left< z \right>} \sqrt{\sigma_F^2 + \sigma_N^2}$$

$E_T \rightarrow E_{\text{trig}}$,

$p_T \rightarrow p_T^{\text{associated}}$

$< z > \rightarrow$ fragmentation function of trigger photon (0.6~0.8)
Centrality dependence of σ_N and σ_F

No strong centrality dependence of either near and far side widths within errors
$<j_T>$ and $\sqrt{<k_T^{rms}>}$ dependences

Increase of j_T with $p_T^{associated}$

k_T is smaller for larger $p_T^{associated}$

k_T is larger for larger E_T

k_T almost constant with E_T

Preliminary
First Results from Photon Multiplicity Detector

- Two planes CPV+Pre-shower
- Gas (Ar+CO₂) detector of 82944 hexagonal cells
- Detector area: 4.2 m²
- Distance from vertex: 5.4 m
- -3.8 < \(\eta \) < -2.3 and full azimuthal coverage

The CPV plane was not in present analysis
Photon Multiplicity Distribution

Minimum Bias Au+Au @ 62.4 GeV

- N_γ at forward rapidities scales with N_{part}
- Better agreement to data of AMPT model than HIJING

N_γ vs. N_{part}

$N_\gamma/0.5N_{\text{part}}$ vs. N_{part}

N_γ vs. η

2.3 < η < 3.7

Better agreement to data of AMPT model than HIJING
Limiting Fragmentation trend

<table>
<thead>
<tr>
<th>Energy dependence</th>
<th>Centrality dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Photons undergo limiting fragmentation**
- **No centrality dependence of limiting fragmentation for photons, unlike for charged particles**

RHIC & AGS Annual Users Meeting – BNL – Upton, NY - May 31, 2005
Marcia Maria de Moura
Limiting Fragmentation Scenario for π and γ

- π production follows the LF scenario
- Photon production is scaled down by about 7% to reflect the contribution from π^0
Direct Photon measurements for p+p and d+Au

- EMC measurements
 - Tower + SMD + pre-shower
- p+p and d+Au, towards Au+Au
- Direct photon spectra
 - Subtraction of background and contamination from inclusive spectra
 - π^0, η photon decays
 - other neutral contribution (n,K^0)
 - Contamination from charged hadrons
 - Acceptance/Efficiency corrections
Direct Photon Analysis Status

- Systematic studies of BEMC/BSMD
- Shower properties studies on BSMD
 - Cluster size, energy
 - Development of cluster algorithm
- Acceptance/efficiency
 - d+Au π^0 embedded data

- EMC module
 - Tower
 - $(\Delta \eta, \Delta \phi) = (0.05, 0.05)$
 - $\delta E/E \sim 16%/\sqrt{E(\text{GeV})}$
 - BMSD
 - $(\Delta \eta, \Delta \phi)$ strip $= (0.007, 0.007)$
 - $\sigma_\eta = 2.4 \text{ mm} + 5.6 \text{ mm} / \sqrt{E(\text{GeV})}$
 - $\sigma_\phi = 3.2 \text{ mm} + 5.8 \text{ mm} / \sqrt{E(\text{GeV})}$
\(\pi^0 \) spectrum for d+Au collisions

From EMC measurements

Mass = 135±1 MeV
Width = 28±0.6 MeV

Event mixing

Reasonable agreement with pQCD calculations within errors

More to come...

- **Photon HBT (Jack Sandweiss talk)**
 - Analysis of $q_{\text{invariant}}$ photon pairs distribution
 - HBT peak produced by direct photons
 - Investigation of spatial and temporal dimensions of QGP phase

- **γ-charged correlations in Au+Au**
 - Potential observation of away-side correlation from direct photons due to hadron (π^0) suppression
 - Investigation of parton energy loss
Back up slides
Near and Far side widths

Decrease with increasing E_{trig}

Decrease with increasing $p_T^{\text{associated}}$