Probing the in-Medium QCD Force by Heavy-Flavor Observables

Shuai Liu, Texas A&M University

In collaboration with: Min He, Xiaojian Du, and Ralf Rapp Based on: Phys.Rev. C99 (2019) 055201 and arXiv:1904.00113

2019 RHIC & AGS Annual Users' Meeting at BNL, New York

<u>Outline</u>

- 1) Background and motivation
- 2) Constrain the force from heavy-flavor spectra
- 3) Constrain the force from quarkonium perspective
- 4) Conclusions and perspective

Color Potential in Vacuum

- Include confinement at long range (soft scale)
- Recover pQCD at short distance (hard scale)

- Can be calculated in lattice QCD
- Successful in studying vacuum quarkonium physics
- Even work well for light hadrons (with relativistic effects)

Color Potential in Medium?

 Help us on: quarkonium properties, heavy-flavor transport, spectral properties, shear viscosity ... arXiv:1612.09138

Color Potential in Medium?

• Help us on: quarkonium properties, heavy-flavor transport, spectral properties, shear viscosity ...

Potentials for Heavy-Light Scattering?

• Propagator to potential:

$$\frac{1}{\left(\sqrt{M^2 + p^2} - \sqrt{M^2 + q^2}\right)^2 - (\mathbf{p} - \mathbf{q})^2} \approx \frac{1}{(0)^2 - (\mathbf{p} - \mathbf{q})^2} \to \frac{1}{4\pi} \frac{1}{r} - \frac{1}{4\pi} \frac{1}{r}$$

- Similar approximation can be applied to confining interaction
- Relativistic vertex structure:

$$V_{ij}^{a}(\mathbf{p},\mathbf{p}') = \mathcal{R}_{ij}^{\mathcal{C}}\mathcal{F}_{a}^{\mathcal{C}}V_{\mathcal{C}}(\mathbf{p}-\mathbf{p}') + \mathcal{R}_{ij}^{\mathcal{S}}\mathcal{F}_{a}^{\mathcal{S}}V_{\mathcal{S}}(\mathbf{p}-\mathbf{p}')$$

- Recover full relativistic Born results at leading 1/M order
- Recover static potential if both quarks are heavy

HQ

q

HQ

In-Medium Potentials Based on Lattice QCD

- *U*: largest confining force, significant larger than vacuum
- F: smallest confining force
- V_s (Strong): large remnant of long-range confining force
- V_w (Weak): small confining force, close to F

A Sensitivity Check at Born Level

• Born Formula for Drag:

$$A(p) = \int d^9 \tilde{p} \,\delta^4 |V|^2 \left(1 - \frac{\mathbf{p} \cdot \mathbf{p}'}{p^2}\right) f_i (1 \pm f_i)(1 - f_Q)$$

• Open HF transport is quite sensitive to underlying potential!

Many-Body Formalism

• Kadanoff Baym equation

$$\frac{\partial}{\partial t} \left[\int d\omega \, G_Q^{<}(\omega, \mathbf{p}, t) \right] = \int d\omega \{ i \Sigma_Q^{<}(\omega, \mathbf{p}, t) G_Q^{>}(\omega, \mathbf{p}, t) - i \Sigma_Q^{>}(\omega, \mathbf{p}, t) \} G_Q^{<}(\omega, \mathbf{p}, t) \}$$

• Reducing to Fock-Plank:

Liu+He+Rapp, PRC 99, 2019

$$\frac{\partial}{\partial t}f(p,t) = \frac{\partial}{\partial p_i} \left\{ A_i(p)f(p,t) + \frac{\partial}{\partial p_j} [B_{ij}(p)f(p,t)] \right\}$$

• Transport coefficients with off-shell effects

$$A(p) = \int d^9 \tilde{p} d^3 \omega \,\delta^4 \left| T_{Qi} \right|^2 \left(1 - \frac{\mathbf{p} \cdot \mathbf{p}'}{p^2} \right) f_i \rho_i (1 \pm f_i) \rho_i (1 - f_Q) \rho_Q$$

• Self-consistent *T*-matrix formalism

Strongly/Weakly Coupled Solutions

Burnier+Kaczmarek+Rothkopf 14

Drag Coefficients from the Many-Body Theory

- V_S: Overall large drag, flat T dependence
- V_w : Overall small drag, perturbative-like T dependence

Langevin Simulation and Comparison to Experiments

- U: consistent with HF experiments BUT NOT consistent with lattice QCD and many-body physics
- V_w : consistent with lattice QCD and many-body physics BUT NOT with HF experiments
- V_S : consistent with both

12

Need radiative

energy loss

Extracting Potential from Bottomonium Observables

Du+Liu+Rapp, arXiv:1904.00113

Ansatz, Parameters and Comparison to Experiments

Du+Liu+Rapp, arXiv:1904.00113

• The potential ansatz (independent from V in open HF section):

$$V = \begin{cases} -\frac{4}{3}\alpha_s \left(\frac{e^{-m_d r}}{r} - m_d\right) + \sigma r, & r < \frac{1}{m_s} \\ -\frac{4}{3}\alpha_s \left(\frac{e^{-m_d r}}{r} - m_d\right) + \frac{\sigma}{m_s}, & r > \frac{1}{m_s} \end{cases}$$

- α_s and σ : fix by vacuum bottomonium state
- Fit parameters: m_d and m_s
- Three scenarios: *K*=1, 5, 10
- Calculate the R_{AA} and compare with experiments

	Experiment	Rapidity	Data (R_{AA})	Reference
	193 GeV U-U	y < 1.0	1S, 1S+2S+3S	STAR [59]
	200 GeV Au-Au	y < 0.5	1S, 2S+3S,	STAR [60]
			1S+2S+3S	
	2.76 TeV Pb-Pb	y < 2.4	1S, 2S	CMS [35]
	2.76 TeV Pb-Pb	2.5 < y < 4.0	1S	ALICE [61]
	5.02 TeV Pb-Pb	y < 2.4	1S, 2S, 3S	CMS [37]
	5.02 TeV Pb-Pb	2.5 < y < 4.0	1 S	ALICE [38]

Results for Extracting the Potential

Du+Liu+Rapp, arXiv:1904.00113

- Large *K* factor is preferred by open heavy flavor physics
- Combining open and hidden HF, a strong
 V is preferred

Conclusion & Perspective

- Combining open HF experiments, lattice QCD, and requirements of many-body physics, a strongly coupled potential closer to V_s is preferred
- Including the insights from open HF physics (strong heavy-light scattering), bottomonium experiments also prefer a strongly coupled potential closer to V_s
- The future analysis encompass both open and hidden HF observables in a unified framework can further narrow down the uncertainties

Compare to Bottomonium Data

Off-shell Effects

• Largest at low temperature where the resonance is significant below the threshold

Scrutinizing Non-perturbative Effects

 Long range confining term makes the largest difference, as large as 15 times of perturbative contribution

How Force Contribute to Drag

 Slice the contribution to A(p) by momentum exchange

$$\bar{K}(k;p)dk \equiv A(p)^{-1}dA(k)$$
$$\bar{A}(k;p) \equiv \int_0^k dk' \bar{K}(k';p) \quad k = |\vec{p}_{\rm cm} - \vec{p}'_{\rm cm}|$$

- Low T and small Charm p: larger percentage of contribution to A_p from low momentum
- High T and large Charm p , larger contribution to A_p from high momentum

