



### Heavy Flavor Measurements from PHENIX

**Timothy Rinn** 

#### Heavy Flavor Quarks as Probe of QGP



At RHIC energies heavy flavor quarks (bottom and charm) are primarily produced in initial hard scattering interactions Experience full evolution of the QGP

Modifications to heavy flavor quarks are a powerful way to study properties of the QGP

#### Studying Heavy Flavor in PHENIX



#### Open Heavy Flavor via Di-Leptons

Semi-Leptonic decays of **Charm** and **Bottom** produce **opposite sign pairs** 



#### Open Heavy Flavor via Di-Leptons

Semi-Leptonic decays of Charm and Bottom produce opposite sign pairs



Semi-Leptonic decays **Bottom** can additionally produce **like sign pairs** 

#### Open Heavy Flavor Like and Unlike **Di-Muon Sign Pairs**

**Unlike Sign Pairs** PRD 99, 072003



Di-muon mass cocktail describes both the like and unlike sign data

8

2

0

3

5 6

 $m_{\mu^{\pm}\mu^{\pm}}$  [GeV/c<sup>2</sup>]

9 10

## Open Heavy Flavor Like and Unlike Di-Muon Sign Pairs



## Open Heavy Flavor Like and Unlike Di-Muon Sign Pairs



## Open Heavy Flavor Like and Unlike Di-Muon Sign Pairs



mass region

# $b\overline{b}$ cross section from like-sign dimuons

Using the like-sign dimuons a bb cross section was extracted



# **b**<del>b</del> cross section from like-sign dimuons

Using the like-sign dimuons a bb cross section was extracted

Consistent with previous PHENIX measurements



### Rapidity dependence of $\sigma_{bar{b}}$

Measured  $\sigma_{b\bar{b}}$ deviates from the central FONLL prediction by about a factor of 2



### Heavy Flavor Azimuthal Correlations



Contribution to  $b\overline{b}$  production from gluon splitting at  $\sqrt{s} = 200$  GeV is negligible at RHIC

### Heavy Flavor Azimuthal Correlations



Heavy Flavor at  $\sqrt{s} = 200$  GeV are produced by pair creation and flavor excitation

At LHC, gluon splitting dominates the heavy flavor production

#### Separating HF electrons in PHENIX

Charm and bottom have different, non zero life times

- $\succ B^{\pm}c\tau = 491 \, \mu m$
- $\succ D^{\pm}c\tau = 312 \ \mu m$

PHENIX cannot measure displaced vertexes directly.

Using VTX can measure dca<sub>T</sub> of electron tracks

 $dca_{\rm T}$  shape of bottom and charm electrons different



VTX: Measure track dca<sub>T</sub> with ~100  $\mu m$  resolution

**Timothy Rinn** 



#### Analysis Strategy



Bayesian unfolding technique simultaneously takes into account inclusive heavy flavor differential cross sections and measured electron  $dca_T$ distributions to extract parent charm and bottom hadron yields



#### Sources of Background

Photonic Electrons:  $\pi^0$ ,  $\eta$ , direct  $\gamma$ Shape determined using M.C.

Non-Photonic Electrons:  $j/\psi$ , ke3 Shape determined using M.C.

Hadron Contamination: Shape from hadrons in data

High Multiplicity Background: Not relevant in p+p, but affects Au+Au.

Bayesian unfolding extracts b and c after fixing the background contributions



### H.F. Hadron Differential Cross-Section



Rapidity integrated heavy flavor hadron differential cross sections were extracted using the unfolding

This result is model dependent, as it assumes the PYTHIA modeling of decay probabilities and rapidity distributions

#### D<sup>0</sup> Cross-Section Measurement

Using a pythia model combined with the unfolding result extracted  $D^0$  yield for |y| < 1

Good agreement with STAR over comparable momentum range





#### Systematic Uncertainties

5 considered sources of uncertainty.

- Intrinsic uncertainty in the unfolding procedure
- Uncertainty to the prior
- Uncertainty due to the regularization parameter
- Uncertainty of the inclusive HF yield
- Uncertainty in the background cocktail



#### 2015 p+p Bottom Electron Fraction

Extract continuous b-fraction result between 1 and 9 GeV

FONLL predictions are consistent with measurement



#### 2015 p+p Bottom Electron Fraction

Extract continuous b-fraction result between 1 and 9 GeV

FONLL predictions are consistent with measurement

Observe consistency with previously published PHENIX measurements



### 2014 Preliminary R<sub>AA</sub> Central

Preliminary R<sub>AA</sub> calculated using STAR e-h correlation measurement as p+p reference

Observe suppression of charm relative to bottom at ~3 GeV/c

For publication result will be updated using the new p+p baseline as well as full 2014 Au+Au data set



#### Extracting Heavy Flavor $v_2$



Measured the  $v_2$  of the charm and bottom enriched regions of the electron  $dca_T$  distribution

Can solve system of equations to extract separated bottom and charm electron  $v_2$ 

#### Bottom and Charm electron $v_2$



Observe significant non-zero charm electron  $v_2$  though notably reduced compared to charged hadrons

Observe an indication for non-zero bottom electron  $v_2$ 

#### Summary

#### ≻p+p

- > Measured  $\sigma_{b\bar{b}}$  factor of 2 higher than central FONLL calculation
- Azimuthal correlation measurement of dimuons from HF is well described by PYTHIA
- Differential cross section of heavy flavor electrons systematically higher than central FONLL predictions
- Bottom electron fraction consistent with FONLL predictions

#### ≻Au+Au:

- b->e are observed to be less suppressed than c->e at 3 GeV/c in 0-10% central events.
- > Observed non zero  $v_2$  for electrons from charm and first measurements of  $v_2$  for electrons from bottom at RHIC

#### But that is not all!

#### Outlook for the Near Future

- Finalized bottom and charm R<sub>AA</sub> utilizing the full 2014 Au+Au data set combined with the 2015 p+p baseline measurement.
- ightarrow B → J/ψ measurements utilizing the large 2014 Au+Au data set



#### Backups

### Unfolding

The unfolding uses Bayesian inference techniques to extract parent charm and bottom hadron  $p_T$  distributions

Done through simultaneous fit to electron invariant yield and electron  $DCA_T$  distributions

The decay matrix contains the probability of a bottom (charm) hadron with a given  $p_{\rm T}$  to decay to an electron with a given  $p_{\rm T}$  and DCA\_T

- > Bottom :=  $B^{\pm}$ ,  $B^{0}$ ,  $B_{s}$ ,  $\Lambda_{b}$  (Includes B->D->e)
- $\blacktriangleright$  Charm := D<sup>0</sup>, D<sup>±</sup>, D<sub>s</sub>,  $\Lambda_c$
- Modeled h->e decays using PYTHIA-6





### Correlations

#### Full parameter values and correlations from the unfolding procedure

#### dca<sub>T</sub> Refold p+p: Low $p_T$



#### <u>c->e:</u>

Monte Carlo shape Normalization from unfolding

#### <u>b->e:</u>

Monte Carlo shape Normalization from unfolding

The charm and bottom yield predicted by the unfolding is consistent with electron measured  $DCA_T$  distributions.

## Heavy Flavor Electron $\frac{d^2\sigma}{dp_T dy}$ Refold p+p



The bottom and charm electron yield measured using the unfolding agrees with the input inclusive differential cross section.

#### 0-10% Central Au+Au b-Fraction

Parallel effort to do a similar analysis with the 2014 Au+Au data set

Observe agreement with theoretical models:

- Consistent with D(2πT) < 4, implies strong coupling in QGP
- Agreement with DGLV, contains both rad. + coll. energy loss in QGP

