Shrinking the Quark-Gluon Plasma

Matthew D. Sievert

With J. Noronha-Hostler and D. Wertepny

arXiv: 1901.01319 arXiv: 1905.13323

RHIC / AGS Annual Users' Meeting 2019

M. Sievert

Tues, June 4, 2019

Motivation: Turning Off the QGP in Small Systems

• **Hydrodynamics** successfully describes the bulk low-pT yields in heavy-ion collisions

- Its **basic assumptions should turn off** at lower energies and smaller collision systems
 - Does it really turn off?
 - > Or do the signals of the QGP survive under the extreme conditions of a tiny droplet?

Motivation for a system size scan in addition to a beam energy scan:
 ➢ PbPb, XeXe, ArAr, OO

S.H. Lim et al., Phys. Rev. C99 (2019)

Hydrodynamics ≈ Linear Response

$$\mathcal{E}_n \equiv -\frac{\langle \int r^n e^{in\phi} s(r,\phi) r dr d\phi \rangle}{\langle \int r^n s(r,\phi) r dr d\phi \rangle} \qquad \qquad \mathcal{V}_n \approx \kappa_n \mathcal{E}_n \qquad \qquad \mathcal{V}_n = \frac{\left\langle \int d^2 p \, dy \, e^{in\phi} \frac{dN_1}{d^2 p \, dy} \right\rangle}{\langle N_{\text{tot}} \rangle}$$

Because of perfect fluidity, the QGP is "Nature's Fourier Transform"

T. Dore, Rutgers University

• Quantified by the **Pearson Coefficient**

$$Q_n \equiv \frac{\langle V_n \mathcal{E}_n^* \rangle}{\sqrt{\langle |V_n|^2 \rangle} \sqrt{\langle |\mathcal{E}_n|^2 \rangle}} = \frac{\langle v_n \varepsilon_n \cos\left(n \left[\psi_n - \phi_n\right]\right) \rangle}{\sqrt{\langle |\varepsilon_n|^2 \rangle \langle |v_n|^2 \rangle}}$$

Hydrodynamics ≈ Linear Response

- Linear response works well in central / mid-central collisions across system size
- The visible trends depend significantly on what is held fixed: centrality or Npart

 For a given Npart, smaller systems are more central and have better linear response

M. Sievert

Not All Small Droplets Are Created Equal

- A "small droplet" in PbPb is very different from one in OO
 - More peripheral in PbPb, more central in OO
 - More elliptical in PbPb, more round in OO
 - Lower temperature in PbPb, higher temperature in OO

M. Sievert

Not All Small Droplets Are Created Equal

OO R^2 =3.9 fm² PbPb R^{2} =6.5 fm² XeXe R^2 =6.0 fm² ArAr $R^2 = 5.3 \text{ fm}^2$ 2 y [fm] y [fm] y [fm] T_{max}~480 MeV ⁻⁶ *T*_{max}~500 MeV T_{max}~460 MeV T_{max}~410 MeV -6-4-20246 -6-4-20246 4 -6-4-202 6 -6-4-20246 x [fm] x [fm] x [fm] x [fm]

For fixed multiplicity

Larger System

More Elliptical

Higher Temperature

Μ.	Siev	vert

6

2

-4

-6

[m] × _2

Initial Eccentricities and Final Flow Harmonics

- System size hierarchy exhibits a crossing in midcentral collisions
- Linear response a good qualitative predictor of vn
- Npart dependence better isolates system size effects

M. Sievert

Cumulant Ratios: Measure of Fluctuations

$$(v_n \{4\})^4 \stackrel{flow}{=} 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle$$
$$= (v_n \{2\})^4 - \operatorname{Var}\left(v_n^2\right)$$

➤ If
$$\frac{v_n{4}}{v_n{2}} \approx 1$$
 then fluctuations are small

Initial state analog $\varepsilon_n \{m\}$ defined with averages of ε_n

➤ If
$$\frac{v_n{4}}{v_n{2}} \ll 1$$
 then fluctuations are **large**

N

Cumulant Ratios: Measure of Fluctuations

 Smaller systems tend to generate more fluctuations

 Npart dependence provides a better comparison than centrality

• Linear response is a reasonable estimate of fluctuations

M. Sievert

Symmetric Cumulants

$$NSC(m,n) = \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle}$$

> If NSC(3,2) > 0 then v_2 and v_3 are **positively correlated**

- > If NSC(3,2) < 0 then v_2 and v_3 are **negatively correlated**
- > If NSC(3,2) = 0 then v_2 and v_3 are **uncorrelated**

Initial state analog $\varepsilon NSC\{m\}$ defined with averages of ε_n

Symmetric Cumulants

- Linear response is a good qualitative predictor of correlations
- In very central events, NSC(3,2) is controlled by centrality (impact parameter)
- In peripheral events,
 NSC(3,2) is controlled
 by small-number
 fluctuations

M. Sievert

Motivation: Using Deformed Nuclei as Model-Killers

- Very central collisions are sensitive to deformation of nuclei and other nuclear structure parameters *G. Giacalone et al., Phys. Rev.* **C97** (2018)
- The **multiplicity dependence** of ultracentral collisions of deformed nuclei can be used to **tune collision geometries**
- Different models lead to **different multiplicity dependence**, which **couple to nuclear deformations differently**
- Motivates a deformed system size scan
 ➢ UU, ⁹Be⁹Be / ⁹BeAu, ³He³He / ³HeAu, dAu

Uranium – Uranium Collisions at STAR

- STAR used a novel centrality binning technique for ultracentral collisions to select on collision geometry
- Used ZDC cuts to select on events with the 1% fewest spectators
- Further **sub-binning by produced multiplicity** is sensitive to overall collision geometry
- Sensitive to the presence of nucleonic substructure??

L. Adamczyk et al., Phys. Rev. Lett. **115** (2015)

13 / 20

M. Sievert

Multiplicity Dependence of CGC Gluon Correlations

M. Sievert

Shrinking the QGP

Apples to Apples: CGC Correlations vs. Hydrodynamics

• In the "dilute / dilute" limit, the **gluon correlations in the CGC** can be expressed in terms of moments of the density profiles

 $N_{tot} \propto \sqrt{T_A T_B}$

LO:
$$v_2\{2\} \sim \frac{1}{N^2} \int T_A^2 T_B^2$$

 $v_2\{2\} \sim \frac{1}{N^2} \int T_A^2 T_B^2$
NLO: $v_3\{2\} \sim \frac{1}{N^2} \int T_A^3 T_B^3$

FR000000000

000

200000

Shrinking the QGP

(Trento p=0)

Deformed Nuclei can Discriminate Models

Using Trento + linear response to estimate final-state hydrodynamics

- As expected, CGC predicts opposite multiplicity dependence from hydro and STAR
- > An initial-state only picture **cannot describe the data**

- Hydro is largely insensitive to choice of $T_A T_B$ vs $\sqrt{T_A T_B}$ scaling
- > CGC slope flattened significantly by linear $T_A T_B$ scaling

M. Sievert

Shrinking the QGP

Small Deformed Systems: dAu

- Same qualitative trends remain in dAu
- Can study resolving power of nucleonic substructure in Trento 2.0

- Small O(5%) sensitivity to substructure (n=6)
- Enhanced to O(10%) sensitivity in 0-10% centrality
- $\sqrt{T_A T_B}$ scaling gets multiplicity distribution right

M. Sievert

Shrinking the QGP

Small Deformed Systems: ⁹Be⁹Be and ⁹BeAu

- ⁹Be is a **highly deformed ion**: its quadrupole moment is more than **twice as large as uranium**
- Intermediate collision systems with large deformation: ⁹Be ⁹Be and ⁹BeAu collisions
- Qualitative CGC vs hydro distinction persists
- Sensitive to nucleonic substructure at O(5%)
- ⁹Be ⁹Be collisions are better than ⁹BeAu collisions for identifying sub-nucleonic fluctuations

18 / 20

M. Sievert

Small Deformed Systems: ³He³He and ³HeAu

- ³He possesses an innate triangularity at the level of nucleons more direct probe of v_3
- CGC multiplicity dependence is steeper than for v_2 due to entering at NLO in dilute / dense
- Still sensitive at O(5%) to nucleonic
 substructure, but this time due to a flattening
 of triangularity when turning on substructure
- ³He ³He collisions are better than ³He Au collisions for identifying sub-nucleonic fluctuations

M. Sievert

Conclusions

- Drops of QGP created from smaller ions are **rounder** and **hotter** than comparable-multiplicity drops created from heavier ions.
- Linear response to initial eccentricities is a good estimator for small collision systems, with linear + cubic response improving quantitative control.
- Some features controlled by **universal small-number statistics in peripheral collisions**, others controlled by **impact parameter in more central collisions**.
- Collisions of small, deformed systems can discriminate between models, including initial state CGC vs final state flow, as well as nucleon vs subnucleonic structure.

M. Sievert