Correlations of Quark-antiquarks in pA collisions

Mauricio Martinez Guerrero 2019 RHIC/AGS Annual User's Meeting June 4-7, 2019 BNL, Upton, NY, USA

Collaborators: M. Sievert, D. Werteptny, J. Noronha-Hostler JHEP 1807 (2018) 03, JHEP 1902 (2018) 024, Forthcoming

NC STATE UNIVERSITY

Role of sub-nucleonic fluctuations

G. Giacalone et al., Phys. Rev. C95 (2017)

 Fluctuations in the initial state of heavy ion collisions contribute to measured anisotropic flow

 For especially sensitive observables, sub-nucleonic fluctuations significantly enhance the total flow and are necessary to describe heavy ion collisions.

Including quarks in the initial state

- In high-energy collisions, the nuclei are dominated by soft gluon radiation
 - Contribute to sub-nucleonic fluctuations of the energy density
- Other quantum numbers like flavor and baryon number are carried only by quarks
- The net production of these conserved charges is nearly zero
- But there is a characteristic pattern of fluctuations due to pair production

Observable

Goal: Calculate (anti)quark correlations in heavy-light ion collisions
 Coordinate space profile for hydro

What is the typical size of a baryon number domain?

$$\begin{aligned} \mathcal{C}^{q\bar{q}}(B_{1\perp},Y_1;B_{2\perp},Y_2) &= \left\langle \frac{dn^q}{d^2 B_1 \, dY_1} \, \frac{dn^{\bar{q}}}{d^2 B_2 \, dY_2} \right\rangle - \left\langle \frac{dn^q}{d^2 B_1 \, dY_1} \right\rangle \left\langle \frac{dn^{\bar{q}}}{d^2 B_2 \, dY_2} \right\rangle \\ &\left\langle \frac{dn^q}{d^2 B_1 \, dY_1} \, \frac{dn^{\bar{q}}}{d^2 B_2 \, dY_2} \right\rangle = \frac{1}{\sigma_{inel}} \frac{d\sigma^{q\bar{q}}}{d^2 B_1 \, dY_1 \, d^2 B_2 \, dY_2} \\ &\left\langle \frac{dn^q}{d^2 B_1 \, dY_1} \right\rangle = 0 \end{aligned}$$

??

- Various mechanisms dominate at various length scales
 - Work to LO in each regime
 - Avoid complicated rescattering corrections

Theoretical setup

- Dilute-Dense (pA) resummation of QCD
 - Dense target: classical gluon fields
 - High density sets hard momentum scale
- Light-cone "time"-ordered dynamics
 - Wave functions in light-front perturbation theory (A⁺=0 gauge)
 - Eikonal scattering via Wilson lines

D. Wertepny, Ph. D. Thesis (2016) arXiv: 1608.08618

- "Heavy-light" (aA) paradigm incorporates projectile density order by order in perturbation theory
 - E.g.) ³He+Au or Cu+Au
 - Moves toward the dense-dense limit

Ingredients I: wave functions

 $\Psi_1 + \Psi_2 + \Psi_3 = 0$

Blaizot, Gelis, & Venugopalan, Nucl. Phys. **A743** (2004) Kovchegov & Tuchin, Phys. Rev. **D74** (2006)

"Time"-ordered wave functions in coordinate space:

$$\mathbf{E.g.} \quad \Psi_2(w_{\perp}, r_{\perp}, \alpha) = -\frac{2\alpha_s}{\pi} \sqrt{\alpha(1-\alpha)} \Biggl\{ \delta_{\sigma, -\sigma'} \frac{m}{w_T} K_1(mr_T) \Biggl[(1-2\alpha) \frac{\vec{w_{\perp}} \cdot \vec{r_{\perp}}}{w_T r_T} - i\sigma' \frac{\vec{w_{\perp}} \times \vec{r_{\perp}}}{w_T r_T} \Biggr]$$
$$+ i\sigma' \delta_{\sigma\sigma'} \frac{m}{w_T} K_0(mr_T) \Biggl[\frac{w_{\perp}^1}{w_T} - i\sigma' \frac{w_{\perp}^2}{w_T} \Biggr] \Biggr\}$$

Ingredients II: amplitude

 The high-energy scattering dresses the WFs with Wilson lines:

$$V_{\boldsymbol{x}} \equiv \mathcal{P} \exp\left[ig \int dx^{+} A^{-}(x^{+}, 0^{-}, \boldsymbol{x})\right]$$

Building block: color and spin matrix at the amplitude level

$$\begin{split} (\tilde{\mathcal{A}}_{NA})_{(ij)\,(kk')\,(\sigma\sigma')}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{b},\boldsymbol{u},\alpha) &\equiv (V_b t^b)_{kk'} \left[\left[W_1^b(\boldsymbol{x},\boldsymbol{y},\boldsymbol{b}) \right]_{ij} \left[\tilde{\Psi}_1(\boldsymbol{u}-\boldsymbol{b},\boldsymbol{x}-\boldsymbol{y},\alpha) \right]_{\sigma',\,-\sigma} \right] \\ &+ \left[W_2^b(\boldsymbol{u},\boldsymbol{b}) \right]_{ij} \left[\tilde{\Psi}_2(\boldsymbol{u}-\boldsymbol{b},\boldsymbol{x}-\boldsymbol{y},\alpha) \right]_{\sigma',\,-\sigma} \right], \end{split}$$
$$W_1^b(\boldsymbol{x},\boldsymbol{y},\boldsymbol{b}) &\equiv V_{\boldsymbol{x}} t^b V_{\boldsymbol{y}}^\dagger - V_b t^b V_b^\dagger \qquad W_2^b(\boldsymbol{u},\boldsymbol{b}) \equiv V_{\boldsymbol{u}} t^b V_{\boldsymbol{u}}^\dagger - V_b t^b V_b^\dagger \end{split}$$

Single pair quark correlations

$$\left\langle |\tilde{\mathcal{A}}_{NA}|^{2} \right\rangle = \frac{1}{2N_{c}} \sum_{i,j=1}^{2} \left(\mathcal{U}_{i}\mathcal{U}_{j} - \mathcal{L}_{i}\mathcal{L}_{j} + \mathcal{T}_{i} \cdot \mathcal{T}_{j} \right) \left\langle \operatorname{tr}_{C}[W_{i}^{b}W_{j}^{b\dagger}] \right\rangle$$

• The single-pair result is simple and familiar:

E.g.)
$$\Omega_{11} = 2N_c C_F - \frac{1}{2}N_c^2 \left\langle \hat{D}_2(\boldsymbol{B}_1, \boldsymbol{b}_1)\hat{D}_2(\boldsymbol{b}_1, \boldsymbol{B}_2) \right\rangle - \frac{1}{2}N_c^2 \left\langle \hat{D}_2(\boldsymbol{B}_2, \boldsymbol{b}_1)\hat{D}_2(\boldsymbol{b}_1, \boldsymbol{B}_1) \right\rangle + \frac{1}{2} \left\langle \hat{D}_2(\boldsymbol{B}_1, \boldsymbol{B}_2) \right\rangle + \frac{1}{2} \left\langle \hat{D}_2(\boldsymbol{B}_2, \boldsymbol{B}_1) \right\rangle$$

- Dipole degrees of freedom: $\hat{D}_2(\boldsymbol{x}, \boldsymbol{y}) \equiv \frac{1}{N_c} \operatorname{tr}_C \left[V_{\boldsymbol{x}} V_{\boldsymbol{y}}^{\dagger} \right]$
- Normalize by the inelastic cross-section (1-gluon production)

$$\sigma_{inel} = \frac{\alpha_s N_c}{\pi^2} \left(a \,\Delta Y \right) \,\int \frac{d^2 x_1 \, d^2 x_2}{(x_{21})_T^2} \left\langle 1 - \left| \hat{D}_2(\boldsymbol{x}_1, \boldsymbol{x}_2) \right|^2 \right\rangle$$

Correlation function

- The range of the correlation is controlled by the quark mass, not the saturation scale
- But the strength of the correlation is controlled by Qs

Interaction mediated correlations: a genuine pA / aA effect

Arises from the interference of gluon / pair scattering

Double pair production: Direct emissions vs. pacman diagrams

Tagging delta functions

- In heavy-light power counting, double-pair production is suppressed vs single-pair, but it becomes important for quark/quark correlations and at distances larger than 1/m
 - Opens up several new channels for correlations

Double pair production: intermediate regime

- For heavy quarks, there is an intermediate region which is dominated by separated double-pair production, but is still perturbative.
- Correlations arise from perturbative mechanisms:
 - Gluon entanglement
 - Scattering in correlated color fields

Double pair production: geometrical

- Over nonperturbative distances, the two pairs are not connected by any perturbative degrees of freedom
 - Scatter in uncorrelated color fields from disjoint nucleons
 - Cross-section factorizes, but geometrical correlations remain

Summary I

Summary II

Towards initial conditions for conserved charges

Step 1

- MC Glauber is used to generate the initial energy distribution of the collision.
- Since this is dominated by gluons we can use this to find the gluon density at a given point.

Forthcoming: Carzon, Martinez, Noronha-Hostler, Sievert, Werteptny

Redistributing energy $g \to q \bar{q}$

Step 2

• Once we know the number of gluons produced we can find the number of quark – antiquark pairs produced at a given point in the transverse plane

Forthcoming: Carzon, Martinez, Noronha-Hostler, Sievert, Werteptny

Conserved charge distributions

 We can also take a look to fluctuations of baryon number distributions, strangeness and electric charge in a given event in pA collisions

Forthcoming: Carzon, Martinez, Noronha-Hostler, Sievert, Werteptny

Quark pair density distribution in pA collisions: preliminary results

Mean $q\bar{q}$ density distribution for different flavors.

- Shape of the distribution changes depending on the mass of the pair.
- Different eccentricities which are flavordependent

-10

-10

-5

0

5

10

0.1

Forthcoming: Carzon, Martinez, Noronha-Hostler, Sievert, Werteptny

-10

-5

0

5

10

More about double pair correlations

- Double cc production introduces a first sensitivity to quark Fermi statistics
 - Antisymmetric wave functions
 - Reduces correlations among quarks
 - Not a "ridge," but a "trough"
- New classes of "non-flow" quantum correlations are possible
 - Cleanest identification of quark channels in the heavy sector

One calculation to rule them all

- One (cc̄)(cc̄) calculation can be simultaneously constrained in both the D and J/ψ sectors
 - *c*c̄ → *D*D̄ by fragmentation
 *c*c̄ → *J*/ψ by NRQCD / ICEM
- Like in pQCD for pp, we can honestly test the partonic mechanisms
 - $(D\overline{D}) (D\overline{D})$ $(D\overline{D}) (J/\psi)$ $(J/\psi) (J/\psi)$
- $(D\overline{D}) h$ $(J/\psi) h$ Bottom sector?

Conclusions

 We have computed in detail the spatial correlations among quarks and antiquarks in the initial stages of heavy-ion collisions

Explicit results for single-pair production

Operator-level results for double-pair production

 Ultimate goal: perform event-by-event sampling of all 3 regions to initialize various conserved charges.

Outlook

- There are many places we can improve on the approximations for the single-pair result
- In addition to the correlations, we can also calculate the local fluctuations

 This is an ideal testbed for the Monte Carlo sampling and proof of principle.

Outlook II

 We have the formal results for the double-pair calculation, but they're long and unwieldy

- Analytic tools are likely to be of limited value; need numerics
- ...But directly applicable to many measured correlations

Double-quarkonia correlations

- 4-particle open heavy / light flavor correlations
- Same sign / opposite sign charge correlations, etc.

Backup slides

Model for the nucleus at high energies

- Heavy lons can be thought of as a bag of nucleons.
- Volume scales with the number of nucleons: $r \sim A_T^{\frac{1}{3}}$

Interacting with a single nucleon

- Quark/gluon interacts with a nucleon
- Exchanges 2 gluons
- Introduces the saturation scale (classical)

$$Q_{s0}^2 = 4\pi \alpha_s^2 T(\boldsymbol{b})$$

On the order of

$$Q_{s\,T}^2 \sim \alpha_s^2 A_T^{\frac{1}{3}}$$

In heavy ions

$$\alpha_s^2 A_T^{\frac{1}{3}} \sim 1$$

Interacting with many nucleons

- Quarks and gluons pass through the shock wave
- Interaction is nearly instantaneous
- Doesn't change transverse position
- Interacts with fields from many nucleons
- Gains a factor per nucleon

$$Q_{sT}^2 \sim \alpha_s^2 A_T^{\frac{1}{3}}$$

For a heavy ion we can consider all the scatterings if

$$\alpha_s^2 A_T^{\frac{1}{3}} \sim 1$$

The interaction is a Wilson line

- These can be represented as Wilson lines in the light-cone gauge, $A^+ = 0$.
- Path ordered exponentials
- Quarks:

$$V_{x} = P \exp \left\{ i g \int dx^{+} t^{a} A_{a}^{-}(x^{+}, x^{-} = 0, x) \right\}$$

Gluons:

$$U_{\boldsymbol{x}} = \operatorname{P} \exp\left\{ i g \int dx^{+} T^{a} A_{a}^{-}(x^{+}, x^{-} = 0, \boldsymbol{x}) \right\}$$

Gluon dipole

- Lets look at the simple case of a gluon dipole
- Gluon dipole passing through the target can be represented with Wilson lines.
- The survival probability for the gluon dipole is:

$$S_G(\boldsymbol{x}_1, \boldsymbol{x}_2) \equiv \frac{1}{N_c^2 - 1} \left\langle Tr[U_{\boldsymbol{x}_1} U_{\boldsymbol{x}_2}^{\dagger}] \right\rangle$$

• Angle brackets represent averaging over all possible charge configurations.

Gluon dipole – survival probability

 The gluon dipole interacts with many nucleons in the target, exchanging two gluons each time (McLerran Venugopalan (MV) model).

$$S_G(x_1, x_2) = \exp\left[-\frac{1}{4} |x_1 - x_2|^2 Q_{sT}^2 \left(\frac{x_1 + x_2}{2}\right) \ln\left(\frac{1}{|x_1 - x_2|\Lambda}\right)\right]$$

A is an IR cutoff:

 $\Lambda \sim \Lambda_{QCD} \approx 250 \mathrm{MeV}$

Heavy-light ion paradigm

• Take into account all nucleons in one of the ions (heavy) and only a few in the other (light).

$$1 \ll A_P^{\frac{1}{3}} \ll A_T^{\frac{1}{3}}$$

Target power counting:

 $\alpha_s^2 A_T^{\frac{1}{3}} \sim 1$

• Projectile power counting:

$$\alpha_s \ll \alpha_s^2 A_P^{\frac{1}{3}} \lesssim 1$$

Definitions

• Multiplicities: inclusive probability densities

$$\left\langle \frac{dn^{i}}{d\omega_{1}} \right\rangle = \frac{1}{\sigma_{inel}} \frac{d\sigma^{i}}{d\omega_{1}} \qquad \left\langle \frac{dn^{i}}{d\omega_{1}} \frac{dn^{j}}{d\omega_{2}} \right\rangle = \frac{1}{\sigma_{inel}} \frac{d\sigma^{ij}}{d\omega_{1}d\omega_{2}} + \delta^{ij}\delta(\omega_{1} - \omega_{2}) \frac{1}{\sigma_{inel}} \frac{d\sigma^{i}}{d\omega_{1}} \frac{d\sigma^$$

Quarks and antiquarks:

$$\left\langle k_1^+ \frac{dn^q}{d^2 B_1 dk_1^+} k_2^+ \frac{dn^q}{d^2 B_2 dk_2^+} \right\rangle_{ev} = \frac{1}{\sigma_{inel}} \left[k_1^+ k_2^+ \frac{d\sigma^{qq}}{d^2 B_1 dk_1^+ d^2 B_2 dk_2^+} + \delta^{(2)} (\boldsymbol{B}_1 - \boldsymbol{B}_2) k_2^+ \delta(k_1^+ - k_2^+) k_1^+ \frac{d\sigma^q}{d^2 B_1 dk_1^+} \right] = \frac{1}{\sigma_{inel}} \left[k_1^+ k_2^+ \frac{d\sigma^{qq}}{d^2 B_1 dk_1^+ d^2 B_2 dk_2^+} + \delta^{(2)} (\boldsymbol{B}_1 - \boldsymbol{B}_2) k_2^+ \delta(k_1^+ - k_2^+) k_1^+ \frac{d\sigma^q}{d^2 B_1 dk_1^+} \right]$$

$$\left\langle k_1^+ \frac{dn^q}{d^2 B_1 dk_1^+} \, k_2^+ \frac{dn^{\bar{q}}}{d^2 B_2 dk_2^+} \right\rangle_{ev} = \frac{1}{\sigma_{inel}} \left[k_1^+ k_2^+ \frac{d\sigma^{q\bar{q}}}{d^2 B_1 dk_1^+ d^2 B_2 dk_2^+} \right]$$

• Correlation function (various definitions!):

$$\mathcal{C}_{ij}(B_1, k_1^+; B_2, k_2^+) \equiv \left\langle k_1^+ \frac{dn^i}{d^2 B_1 dk_1^+} k_2^+ \frac{dn^j}{d^2 B_2 dk_2^+} \right\rangle_{ev} - \left\langle k_1^+ \frac{dn^i}{d^2 B_1 dk_1^+} \right\rangle_{ev} \left\langle k_2^+ \frac{dn^j}{d^2 B_2 dk_2^+} \right\rangle_{ev}$$

• "Parton-level" baryon number: $\mathcal{B} \equiv \frac{1}{3} \sum_{f} (n^{q_f} - n^{\bar{q}_f})$

MV model quick review

Target averages in classical random color fields (MV model)

$$\langle \mathcal{A}_a^-(x^+, x^-, \boldsymbol{x}) \mathcal{A}_b^-(y^+, x^-, \boldsymbol{y}) \rangle = \delta_{ab} \delta(x^+ - y^+) \gamma(\boldsymbol{x} - \boldsymbol{y})$$

• Take the large-Nc limit to simplify the color algebra

$$\left\langle \hat{D}_2(\boldsymbol{x}, \boldsymbol{y}) \hat{D}_2(\boldsymbol{u}, \boldsymbol{v}) \right\rangle \approx \left\langle \hat{D}_2(\boldsymbol{x}, \boldsymbol{y}) \right\rangle \left\langle \hat{D}_2(\boldsymbol{u}, \boldsymbol{v}) \right\rangle$$
$$\left\langle \hat{D}_2(\boldsymbol{B}_1, \boldsymbol{B}_2) \right\rangle = \left\langle \hat{D}_2(\boldsymbol{B}_2, \boldsymbol{B}_1) \right\rangle = e^{-\frac{1}{4}|\boldsymbol{B}_1 - \boldsymbol{B}_2|_T^2 Q_s^2}$$

• Neglect the weak spatial dependence of the saturation scale

$$\langle k_T^2 \rangle \sim Q_s^2(b_T) \propto \rho_{2D}(b_T)$$

• Work in the quasi-classical approximation (no small-x evolution)