EIC theory overview

Yoshitaka Hatta (BNL)

Electron-Ion Collider (EIC)

A future (2029 \sim) high-luminosity polarized ep, eA collider dedicated to the study of the nucleon and nucleus structure.

REACHING FOR THE HORIZON

LONG RANGE PLAN

for NUCLEAR SCIENCE

The 2015

Center-of-mass energy Luminosity

Gluons and the quark sea at high energies:

distributions, polarization, tomography

September 13 to November 19, 2010

Report from the INT program "Gluons and the guark sea at high

energies: distributions, polarization, tomography"

2010 INT workshop

Electron Ion Collider: The Next OCD Frontier

2012 White paper

erstanding the glue

that hinds us all

o small x uncertainty from DSSV

 $\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x, Q^2)$

$$20 \lesssim \sqrt{s} \lesssim 140 \,\mathrm{GeV}$$
$$\sim 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

Organizers: Daniel Boer **KVI**, University of Groningen D.Boer@rug.nl

Markus Diehl DESY

Richard Milner nilner@mit.edu

Raju Venugopalan Brookhaven National aboratory aju@quark.phy.bnl.gov

Nerner Vogelsang

"The committee finds that the science that can be addressed by an EIC is compelling, fundamental and timely."

AN ASSESSMENT OF **U.S.-BASED ELECTRON-ION** COLLIDER SCIENCE

CONSENSUS STUDY REPORT

Experiment at EIC: Deep Inelastic Scattering (DIS)

Proton, deuteron, helium, gold...any nucleus of your choice!

Electron, proton and light nuclei can be polarized.

EIC Kinematical coverage

Scientific goals of EIC

Scientific goals of EIC

Multi-dimensional tomography

$$u(x) = \int \frac{dz^-}{4\pi} \langle P|\bar{u}(0)\gamma^+ u(z^-)|P\rangle$$

Ordinary parton distribution functions (PDF) can be viewed as the 1D tomographic image of the nucleon

The nucleon is much more complicated! Partons also have transverse momentum \vec{k}_{\perp} and are spread in impact parameter space \vec{b}_{\perp}

$$u(x, \vec{k}_{\perp})$$

 $u(x, \vec{b}_{\perp})$
 $u(x, \vec{b}_{\perp}, \vec{k}_{\perp})$

Transverse momentum dependent distribution(TMD)3D tomography

Generalized parton distribution (GPD) 3D tomography

 (b_{\perp}, k_{\perp}) Wigner distribution 5D tomography

Semi-inclusive DIS

Tag one hadron species with fixed transverse momentum P_{\perp}

When P_{\perp} is small, TMD factorizationCollins, Soper, Sterman;
Ji, Ma, Yuan,... $\frac{d\sigma}{dP_{\perp}} = H(\mu) \int d^2 q_{\perp} d^2 k_{\perp} f(x, k_{\perp}, \mu, \zeta) D(z, q_{\perp}, \mu, Q^2/\zeta) \delta^{(2)}(zk_{\perp} + q_{\perp} - P_{\perp}) + \cdots$
TMD PDFTMD FF

Open up a new class of observables where perturbative QCD is applicable!

TMD global analysis

Global analysis of TMD based on ~8000 data points from SIDIS, Drell-Yan.

Bacchetta, Delcarro, Pisano, Radici, Signori (2017)

arTeMiDe state-of-the-art (NNLO+NNLL) implementation

Scimemi, Vladimirov (2017)

TMDlib public library Hautmann, Jung, Mulders,...

Still in its infancy. Fully blossoms in the EIC era!

Universality up to a sign

Sivers function for the transversely polarized nucleon

$$\sim \vec{k}_{\perp} \times \vec{S}_{\perp} f_{1T}^{\perp}(x,k_{\perp})$$

Azimuthal anisotropy of parton distribution, responsible for single spin asymmetry

The same function, but with opposite signs in DIS and Drell-Yan. (Collins, 2002)

EIC can probe the gluon Sivers function for the first time.

Zheng, Aschenauer, Lee, Xiao, Bao (2018)

Generalized parton distributions (GPD)

$$P^{+} \int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \langle P'S' | \bar{\psi}(0) \gamma^{\mu} \psi(y^{-}) | PS \rangle$$

= $H_{q}(x, \Delta) \bar{u}(P'S') \gamma^{\mu} u(PS) + E_{q}(x, \Delta) \bar{u}(P'S') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} u(PS) \qquad \Delta = P' - P$

Distribution of partons in impact parameter space $\,b_{\perp}$

Towards measuring GPD E at the EIC

Ji sum rule for proton spin

$$\frac{1}{2} = J_q + J_g$$

$$J_q = \frac{1}{2} \int dx (H_q(x) + E_q(x))$$

Currently very little is known about E_q , nothing about E_g from experiments.

At EIC, we can get a handle on E_q . Aschenauer, Fazio, Kumericki, Muller (2013)

 E_g is still challenging, but EIC is the only hope.

$$J_g = \frac{1}{4} \int dx (H_g(x) + E_g(x))$$

D-term: the last global unknown

$$\langle P'|T^{ij}|P\rangle \sim (\Delta^i \Delta^k - \delta^{ik} \Delta^2)D(t)$$

 $D(t=0)\,$ is a conserved charge of the nucleon, just like mass and spin!

Related to the radial `pressure' inside a nucleon Polyakov, Schweitzer,...

$$T^{ij}(r) = \left(\frac{r^i r^j}{r^2} - \frac{1}{3}\delta^{ij}\right)s(r) + \delta^{ij}p(r)$$

Burkert, Elouadrhiri, Girod (Nature, 2018)

First extraction at Jlab, large model dependence. Need significant lever-arm in Q^2 to disentangle various moments of GPDs

Scientific goals of EIC

QCD at small-x

Probability to emit a soft gluon diverges

A myriad of small-x gluons in a high energy hadron/nucleus!

$$\sum_{n} \frac{1}{n!} \left(\alpha_s \ln 1/x \right)^n \sim \left(\frac{1}{x} \right)^{\alpha_s}$$

Gluon saturation

The gluon number eventually saturates, forming the universal QCD matter at high energy called the Color Glass Condensate.

Gribov, Levin, Ryskin (1980); Mueller, Qiu (1986); McLerran, Venugopalan (1993)

Gluons overlap when

$$\frac{\alpha_s}{Q^2} x G(x, Q^2) = \pi R_p^2$$

The saturation momentum

$$Q = Q_s(x) \gg \Lambda_{QCD}$$

High density, but weakly coupled many-body problem

Has saturation been observed at HERA, RHIC, LHC?

eA collision at EIC : ideal place to study saturation

No initial state interactions (advantage over LHC, RHIC)

Nuclear enhancement of the saturation momentum (advantage over HERA)

Golden channel for saturation: Diffraction

Cross sections proportional to the square of the gluon distribution

 \rightarrow More sensitive to saturation

`Day 1 prediction' Kowalski, Lappi, Marquet, Venugopalan (2008)

 $\frac{\sigma_{diff}}{\sigma_{tot}}\Big|_{eA} \approx 20\% > \left.\frac{\sigma_{diff}}{\sigma_{tot}}\right|_{ep} \quad \text{Nucleus stays intact in every 1 out of 5 events!}$

Recently extended to NLL+NLO for dijet, vector meson...

Boussarie, Grabovsky, Szymanowski, Wallon (2016,2019)

Can access also the Wigner distribution

YH, Xiao, Yuan (2016) Mantysaari, Mueller, Schenke 1902.05087

Scientific goals of EIC

Proton spin decomposition

The proton has spin ½. The proton is not an elementary particle.

Jaffe-Manohar sum rule

 $\Delta\Sigma=1~$ in the quark model

Proton spin crisis

In 1987, EMC (European Muon Collaboration) announced a very small value of the quark helicity contribution

$\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$!?

Recent values from NLO global analysis

$$\Delta \Sigma = 0.25 \sim 0.3$$

 $\int_{0.05}^{1} dx \Delta G(x, Q^2) \approx 0.2 \pm_{0.07}^{0.06}$

DeFlorian, Sassot, Stratmann, Vogelsang (2014)

Warning: Huge uncertainties from the small-x region

Helicity measurements at EIC

After one-year of data taking at EIC...

Wider coverage in x and Q^2 ... finally solve the spin puzzle? **NO**

Don't forget Orbital Angular Momentum. It's there!

All-loop resummation of small-x double logarithms $(\alpha_s \ln^2 1/x)^n$ gives

$$L_g(x) \approx -2\Delta G(x)$$

Boussarie, YH, Yuan (2019)

Significant cancellation at small-x from one-loop DGLAP YH, Yang (2018)

Measuring OAM at EIC

Ji, Yuan, Zhao (2016) YH, Nakagawa, Xiao, Yuan, Zhao (2016) Bhattacharya, Metz, Zhou (2017)

Exploit the connection between OAM and the Wigner distribution

$$L^{q,g} = \int dx \int d^2 b_{\perp} d^2 k_{\perp} (\vec{b}_{\perp} \times \vec{k}_{\perp})_z W^{q,g}(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

Longitudinal single spin asymmetry in diffractive dijet production

Need more work, more new ideas!

Scientific goals of EIC

Finding 1: An EIC can uniquely address three profound questions about nucleonsprotons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?

(2018/07)

• What are the emergent properties of dense systems of gluons?

Proton mass crisis

u,d quark masses add up to ~10MeV, only 1 % of the proton mass!

Higgs mechanism explains quark masses, but not hadron masses!

The trace anomaly

QCD Lagrangian approximately scale (conformal) invariant. Why is the proton mass nonvanishing in the first place?

Conformal symmetry is explicitly broken by the trace anomaly.

QCD energy-momentum tensor

$$T^{\mu\nu} = -F^{\mu\lambda}F^{\nu}_{\ \lambda} + \frac{\eta^{\mu\nu}}{4}F^2 + i\bar{q}\gamma^{(\mu}D^{\nu)}q$$

$$T^{\mu}_{\mu} = \frac{\beta(g)}{2g}F^2 + m(1 + \gamma_m(g))\bar{q}q$$

$$\langle P|T^{\mu}_{\mu}|P\rangle = 2M^2$$

Photo-production of J/ψ near threshold

Kharzeev, Satz, Syamtomov, Zinovjev (1998) Brodsky, Chudakov, Hoyer, Laget (2000)

Sensitive to the matrix element $\langle P'|F^{\mu\nu}F_{\mu\nu}|P\rangle$

Straightforward to measure. Ongoing experiments at Jlab.

Difficult to compute from first principles (need nonperturbative approaches)

Holographic approach

YH, Yang (2018),
YH, Rajan, Yang, 1906.00894 ← NEW!!

Scattering of hadrons 🗢 scattering of strings in anti-de Sitter

The operator $F^{\mu\nu}F_{\mu\nu}$ is dual to a massless string called dilaton

We can do it at RHIC, too!

Near threshold production in ultra-peripheral pA collisions (UPC)

YH, Rajan, Yang, 1906.00894

...and in future, at the EIC

Conclusion

- The science of EIC is one of the key future directions of nuclear physics in the US and around the world.
- EIC will significantly advance our knowledge of the nucleons/nuclei, the fundamental building blocks of the universe.
- Topics not covered include:

jets, lattice, EMC, short-range correlation, transverse spin, SSA, nPDF, etc. etc.

EIC user group 833 members, 177 institutions (as of Nov.2018)

Let's join the groundswell. Exciting times ahead!