Woman in Physics: A personal journey

This work is supported by NSF under grant PHY 1653405
“CAREER: Constraining Parton Distribution Functions for New-Physics Searches”
Few Facts about Me...

§ I got my PhD at Columbia University working in lattice QCD
 I use high-performance supercomputers to study the properties of the quarks and gluons of nucleon
 I have been married since 2006 and have 2 daughters
§ Currently Assistant Professor at Michigan State University
§ Like many women in physics, I often find myself the only female in the office, group, author list, workshop, etc.
 I started a Women in Lattice QCD luncheon in 2008, which is now an annual event at the Lattice Conference
Outline

§ Some Statistics on Women in Lattice QCD

§ Many-Body Problems
 ➔ How I navigated through them

§ Work-Life Balance
 ➔ And how my kids help me in teaching and outreach
Some Statistics on Women in Lattice QCD
Lattice Conference Participation

- Limited to the 21st century
- Is female participation growing in our field?

Gender Breakdown by Continent

- Europe
- Asia
- America

![Graph showing gender breakdown by continent with data points and a trend line indicating increasing female participation.](image)
Lattice Conference Speakers

§ Are women given opportunities for career preparation?
☞ Consider the plenary-speaker gender distribution

§ Plenary speakers vs conference participation
☞ Does the fraction of female plenary speakers reflect the fraction of female participants?
☞ Is female participation growing over time? Geo-dependent?

![Gender Breakdown of Lattice Conference Plenary Speaker Gender](image1)

![Gender Breakdown of Lattice Conference Participation](image2)
§ Average fraction of female plenary speakers and conference participants by continent of the conference

Fraction of Women Plenary Speakers by Continent

- Europe
- Asia
- America

Fraction of Women by Continent

- Europe
- Asia
- America
Not Enough Women?

§ Is the small number of plenary talks given by women due to lack of women in our field?

♫ Consider the number of speakers invited to give more than 1 plenary talk: the recall rate for men is double that of women
Segregated by Subfield?

§ Breakdown by topic

作ったために女性の参加が関連していますか？

<table>
<thead>
<tr>
<th>Topic</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms and Machines</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Beyond the Standard Model</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Chiral Symmetry, Vacuum Structure</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Ensemble Generation</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Hadron Spectroscopy</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Hadron Structure</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Heavy Quarks</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Nonzero Temperature and Density</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Non-Lattice</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>Renormalization</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Standard-Model Parameters</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Other Topics</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>
§ Use APS April meeting as a baseline

☞ Compared to them, we are not doing very well
☞ Does monitoring by APS Women Committee make a difference?
☞ Try comparing with other theoretical physics conferences?
Diversity Effort in LQCD

§ This year, we assembled the first Diversity and Inclusion committee and just finished our first survey

☞ The committee is still analyzing the data we received
☞ 173 responses (a typical LQCD attendance is 300–500)
Diversity Effort in LQCD

This year, we assembled the first Diversity and Inclusion committee and just finished our first survey.

The committee is still analyzing the data we received.

173 responses (a typical LQCD attendance is 300–500)

What is your ethnicity? (Select all that apply.)

173 responses

- East Asian: 21 (12.1%)
- South Asian: 10 (5.8%)
- Black/African: 1 (0.6%)
- Caucasian/White: 130 (75.1%)
- Hispanic/Latinx: 6 (3.5%)
- Middle Eastern: 3 (1.7%)
- Native American: 1 (0.6%)
- Pacific Islander: 2 (1.2%)
- Caribbean: 0 (0%)
- Prefer not to answer: 8 (4.6%)
Many-Body Problems
I hate to ask people for favors, but those few times I did ask for help, I always got more than I anticipated.

People are eager to help someone in a difficult situation.

So thank you very much to those helping hands.
§ Two-body problem: Let people know about it!

♫ My husband was also a lattice-QCD theorist
♫ We were lucky to not be apart for longer than one year
 ♫ People in our field have been very helpful in coming up with soft money to make a second postdoc hire for him as I moved around the country
♫ Cons: Just as he spent a year getting up to speed to on a new research direction, he had to move again:
 no time to build up a good academic CV
♫ We always knew getting 2 theorist academic positions was going to be an issue
♫ Plan B was prepared well in advance
§ Three-body problem

🔗 Help from family members was valuable
🔗 Lucky to have my mom and sister-in-law with us when our first daughter was little
🔗 Allowed me to work as “usual”

§ Four-body problem

🔗 Things got more complicated when we had a second child
🔗 Planned family help fell apart
🔗 My husband left academia to work at Google
🔗 Everything happened very last-minute, and I ended up a stay-home mom for a short period of time
🔗 Never an option that I thought about before
§ Visiting Assistant Professor at UC, Berkeley

☞ I reached out to a number of people in the Bay Area and started to visit Berkeley Lab

☞ Part-time appointment at UC, Berkeley

(Thanks to Wick Haxton!)

§ APS Blewett Fellowship

☞ Fellowship to help women getting back to physics due to career breaks

https://www.aps.org/programs/women/scholarships/blewett/
APS Blewett Fellowship

Fellowship to help women getting back to physics due to career breaks. [Link](https://www.aps.org/programs/women/scholarships/blewett/)

- $45,000/year and can be renewed for a second year
- Money helped a bit in putting kids into daycare when the youngest was old enough
- Surrounded by Silicon Valley pay rates and work hours, I wondered if I made the right choice staying in academia
- Blewett Fellowship gave me hope to continue
- The announcement in APS News brought many warming emails from people I knew from past workplaces and even from people I knew just a bit from past workshops and conferences
Work-Life Balance
Kids are Constraints

§ There is no doubt that kids take up huge amount of time
 ✜ At least 6 hours less work hours during work days
 ✜ Weekends are barely workable
 ✜ Juggle multiple travel schedules
 ✜ No time for leisure travel: airport-conference venue-airport
 ✜ I pass by many exciting cities and never have the chance to see them
 ✜ Need to hurry home when my husband has work deadlines to meet

§ Received many good suggestions
 ✜ Learn to be more efficient during work hours; time tracking
 ✜ Learn to politely say “no” to non-essential duties
 ✜ I used to like to do everything myself...now I assign more tasks to collaborators more to even out the workload.
 ✜ Seek more wisdom to find what works for you

§ I combined some work and family
I volunteered to teach algebra-based “Introduction to Physics” for pre-med students.

- Anticipated some bad student reviews
 - Well known bias against women and non-native speakers
- Practiced how to communicate with my students with my kids
- As I researched for more interactive ways to improve the transitional classroom teaching, I was able to share similar materials with my kids though YouTube, DIY, PhET simulation.

Examples

- Replaced standard class demos with everyday items:
 - Many fun balloon-static demos that are kids appropriate
 - I used my kids’ hula-hoop to demonstrate the 1st right-hand rule
- I tried out demos over the weekend with my kids as audience
Outreach

§ “My research focuses on using high-performance supercomputers to study the properties of the subatomic particles which form the building blocks of atomic nuclei.”

✈ Great way to shut down a conversation on an airplane
✈ Hard to keep the general public engaged
 ✈ No pretty pictures
 ✈ No cute animals
 ✈ Nothing explodes
 ✈ So small it’s hard to relate
 ✈ Multidimensional spaces are hard to visualize

§ I have two curious girls who ask tons of questions
✈ I would like to talk to them about what I do (a bit)
§ The concept:

☞ How do we get young people, especially women, interested in and excited about what we do?
☞ We want more girls in science and computational fields
☞ Pipeline problem? Get them started early!

§ Match-3 genre is more accessible, attractive to girls
§ More girls in games ⇒ more career programmers
§ Portray QCD in this medium

☞ Public-friendly manner; no confusing jargon

§ NSF is the perfect agency to fund this effort

This work is supported by NSF under grant PHY 1653405 “CAREER: Constraining Parton Distribution Functions for New-Physics Searches”

☞ My kids are more than happy to help and found many bugs
§ Learn QCD on your phone

Google Play Store

Apple Appstore
Questions?
Extra Slides
Quantum 3

§ Collaborating with Games for Education and Learning (GEL) Lab at MSU to recruit undergrads for this project

★ Students learn/train with real working experience
★ Good for the resume when they graduate
★ It’s pretty cool to tell your friends, “I made a game!”

§ MSU undergraduate students are the main force

★ Team: Tristan Özkan, Harrison Sanders, Rebecca Roman, Roman Firestone, Colleen Little
Design and Implementation

§ Have to keep it simple

☞ Like to cover a lot, but don’t want players to lose interest
☞ There are some trade offs
☞ We hope people who get interested in quantum physics from our game move on to advanced apps like “Particle Adventure”

§ Only make baryons

§ Cute mascot is essential

☞ Googly eyes and friendly smile

§ Start from the simplest “color” degree of freedom, then add “flavor” and lastly introduce the hard “spin”

☞ Younger (4–5) kids can get to the flavor quantum number
☞ Spin depends on being comfortable with a little math; good for older kids and general public (adults)
§ We checked our art design for color-blind friendliness.

(web page)

Our three choices of color are distinguishable for them.

Tetrachromat

Simulation of what color-blind may see
Kids Become the Teachers

§ Love to see more tweets like this

Chris Oakley @DrPhysOaks · Mar 21
Replying to @NSF_MPS and @michiganstateu
...and my seven year old is explaining to me how to create Xi - ...

https://twitter.com/NSF_MPS/status/1106577806673264640