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The Schrödinger functional, a short reminder

The Schrödinger functional is the functional integral on a hyper cylinder,

Z =

∫

fields

e−S

with periodic boundary conditions in spatial directions and Dirichlet conditions in time.
With P± = 1

2(1 ± γ0),

P+ψ(x)|x0=0 = ρ P−ψ(x)|x0=T = ρ′

ψ̄(x)P−|x0=0 = ρ̄ ψ̄(x)P+|x0=T = ρ̄′,

Ak(x)|x0=0 = Ck Ak(x)|x0=T = C ′
k

Correlation functions are then defined as usual

〈O〉 =

{

Z−1

∫

fields

O e−S
}

ρ=ρ′=0; ρ̄=ρ̄′=0
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O may contain quark boundary fields

ζ(x) ≡ P−ζ(x) =
δ

δρ̄(x)

ζ̄(x) ≡ ζ̄(x)P+ = − δ

δρ(x)

T

time

0

space

C’

C

• N.B.: The fermionic boundary values ρ, ρ̄ and ρ′, ρ̄′ act as external sources, and are
always set to zero in correlation functions

⇒ alternatively, one can directly identify

ζ = P−ψ(x)|x0=0, ζ̄ = ψ̄(x)P+|x0=0

ζ ′ = P+ψ(x)|x0=T , ζ̄ ′ = ψ̄(x)P−|x0=T
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SF boundary conditions for Ginsparg-Wilson type quarks

Main goal: apply SF renormalization schemes to Ginsparg-Wilson type quarks (overlap,
DWF,...);

• use cheaper regularization to obtain universal running (of coupling, quark masses,
composite operators) in the continuum limit

• use GW regularisation of SF to match SF scheme at a low energy scale

⇒ mainly need SF with massless quarks!

Proposed solutions:

• direct orbifold construction (Taniguchi ’04)

• “symmetries plus universality” (Lüscher ’06)

• here: orbifold construction of chirally rotated SF (see also Taniguchi ’06)
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SF boundary conditions and chiral rotations

Consider isospin doublets χ′ and χ̄′ satisfying homogeneous SF boundary conditions
(P± = 1

2(1 ± γ0)),

P+χ
′(x)|x0=0 = 0, P−χ

′(x)|x0=T = 0,

χ̄′(x)P−|x0=0 = 0, χ̄′(x)P+|x0=T = 0.

perform a chiral field rotation,

χ′ = exp(iαγ5τ
3/2)χ, χ̄′ = χ̄ exp(iαγ5τ

3/2),

the rotated fields satisfy chirally rotated boundary conditions

P+(α)χ(x)|x0=0 = 0, P−(α)χ(x)|x0=T = 0,

χ̄(x)γ0P−(α)|x0=0 = 0, χ̄(x)γ0P+(α)|x0=T = 0,

with the projectors
P±(α) = 1

2

[

1 ± γ0 exp(iαγ5τ
3)

]

.
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Special cases of α = 0, π/2:

P±(0) = P±, P±(π/2) ≡ Q± = 1
2(1 ± iγ0γ5τ

3),

The chiral rotation introduces a mapping between renormalised correlation functions

〈O[χ, χ̄]〉P±
= 〈Õ[χ, χ̄]〉P±(α)

with Õ[χ, χ̄] = O
[

exp(iαγ5τ
3/2)χ, χ̄ exp(iαγ5τ

3/2
]

,

Boundary quark fields are included by replacing

ζ̄(x) ↔ χ̄(0,x)P+ ζ(x) ↔ P−χ(0,x)

Note: The chirally rotated framework is only chosen for technical convenience. Using
the above dictionary any standard SF correlator can be easily translated to this rotated
framework (for an even number of fermions)
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Orbifold technique

Orbifold techniques have been used to implemement the standard SF conditions for
Ginsparg-Wilson quarks (Taniguchi ’04). Here:

• start with standard lattice action for a single massless quark flavour

Sf [ψ, ψ̄, U ] = a4
∑

x

ψ̄(x)DNψ(x), DN = 1 −A(A†A)−1/2, A = 1 − aDW

where
ψ(x0 + 2T,x) = −ψ(x), ψ̄(x0 + 2T,x) = −ψ̄(x)

• introduce a reflection (R2 = id)

R : ψ(x) → iγ0γ5ψ(−x0,x), ψ̄(x) → ψ̄(−x0,x)iγ0γ5

• the gauge field is extended to [−T, T ] and then periodically continued:

Uk(−x0,x) = Uk(x0,x), U0(−x0 − a,x)† = U0(x)
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• Decompose fields into even and odd with respect to R,

Rψ± = ±ψ±, Rψ̄± = ±ψ̄±

• even/odd fields satisfy the boundary conditions at x0 = 0

(1 ∓ iγ0γ5)ψ±(0,x) = 0 ψ̄±(0,x)(1 ∓ iγ0γ5) = 0

• and with complementary projectors at x0 = T , due to antiperiodicity:

(1 ± iγ0γ5)ψ±(T,x) = 0 ψ̄±(T,x)(1 ± iγ0γ5) = 0

• [DN , R] = 0

⇒ Sf [ψ, ψ̄, U ] = Sf [ψ+ + ψ−, ψ̄+ + ψ̄−, U ] = Sf [ψ+, ψ̄+, U ] + Sf [ψ−, ψ̄−, U ]

⇒ the functional integral factorises!
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• interpret even and odd fields as quark flavours

χ =
√

2

(

ψ−

ψ+

)

, χ̄ =
√

2
(

ψ̄− ψ̄+

)

• functional integral:

∫

∏

−T≤x0<T

dψ(x)dψ̄(x)e−Sf [ψ,ψ̄,U ] ∝
∫

∏

0≤x0≤T

dχ(x)dχ̄(x)e−
1
2Sf [χ,χ̄,U ]

• equivalent to theory in the interval [0, T ] with boundary conditions

Q+χ(x)|x0=0 = 0, Q−χ(x)|x0=T = 0,

χ̄(x)Q+|x0=0 = 0, χ̄(x)Q−|x0=T = 0
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The dynamical field variables are

Q−χ(0,x), χ(x)|0<x0<T , Q+χ(T,x)

and
χ̄(0,x)Q−, χ̄(x)|0<x0<T , χ̄(T,x)Q+

Using the orbifold symmetry the Dirac operator can be reduced implicitly to the interval
[0, T ]:

Sf [χ, χ̄, U ] = a4
∑

−T<x0≤T

χ̄(x)DNχ(x) = 2a4
∑

0≤x0≤T

χ̄(x)DNχ(x),

• but the explicit form of DN is unnecessarily complicated!

⇒ use an alternative set-up:
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Alternative set-up:

• Start with 2(T + a) anti-periodic fields ψ, ψ̄

ψ(x0 + 2(T + a),x) = −ψ(x), ψ̄(x0 + 2(T + a),x) = −ψ̄(x),

• introduce a reflection (R2 = id)

R : ψ(x) → iγ0γ5ψ(−a− x0,x), ψ̄(x) → ψ̄(−a− x0,x)iγ0γ5

• the gauge field is extended to [−T − a, T + a] and then periodically continued

Uk(−a− x0,x) = Uk(x0,x), U0(−2a− x0,x)† = U0(x)

this implies that the boundary layer is doubled!

• decompose in even/odd fields and define doublets χ, χ̄ as before the dynamical field
variables are now χ(x) and χ̄(x) for all 0 ≤ x0 ≤ T
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• achievement: the construction is completely analogous to the Wilson-Dirac case
(S.’05); a block structure (in time) of the Wilson-Dirac operator is obtained and
inherited by the overlap operator

⇒ the Neuberger operator in the inverval is simply obtained by using the corresponding
orbifolded Wilson-Dirac kernel:

DN = 1 −A(A†A)−1/2, A = 1 − aDW

with the kernel DW ,

aDWχ(x) = −U(x, 0)P−χ(x+ a0̂) + (Kψ)(x) − U(x− a0̂)†P+χ(x− a0̂),

where we have set χ(x) = 0 for x0 < 0 and x0 > T , and

K = 1 + 1
2

3
∑

k=1

{

a(∇k + ∇∗
k)γk − a2∇∗

k∇k

}

+ δx0,0iγ5τ
3P− + δx0,T iγ5τ

3P+
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Symmetries

In a massless theory in finite volume the identification of flavour and chiral symmetries
is a mere convention!

• take the standard Schrödinger functional with projectors P± as SU(2) flavour
symmetric reference basis

• in the rotated SF, the SU(2) flavour symmetry is realised à la Ginsparg-Wilson:

γ5τ
1,2DN + DNγ5τ

1,2 = DNγ5τ
1,2DN

τ3DN −DNτ3 = 0

Note that the flavour algebra closes [γ̂5 = γ5(1 − aDN)]:

T̂ 1 = γ̂5τ
2/2, T̂ 2 = −γ̂5τ

1/2, T̂ 3 = τ3/2, [T̂ a, T̂ b] = iεabcT̂ c
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• Chiral symmetry is broken by the SF boundary conditions:
expect: the standard GW relation is violated by terms which decrease exponentially
with the distance from the boundaries

• form of non-singlet chiral symmetries:

[τ1,2,DN ] 6= 0, {γ5τ
3,DN} 6= aDNγ5τ

3DN

expect: both flavour components of DN become equal and the GW relation holds
up to corrections which decrease exponentially with the distance from the boundaries
(checked at tree level).

• GW versions of parity and time reversal, e.g. :

P : χ(x) → iγ0γ5τ
3χ(x̃), x̃ = (x0,−x), DNP + PDN = DNPDN

• in contrast to the case of Wilson quarks, parity and flavour are realised exactly, expect
no extra counterterms!
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Real & Positive Determinant?

• The determinant is real, due to the hermiticity property

γ5τ
1DNγ5τ

1 = D†
N .

Furthermore, this equation implies that the determinants of the single flavour
operators are complex conjugate to each other:

DN = diag
(

D(1)
N ,D(2)

N

)

, detD(1)
N =

(

detD(2)
N

)∗

.

The determinant is therefore non-negative

detDN = det
(

D(1)
N

)

det
(

D(2)
N

)

≥ 0

One furthermore expects that the SF boundary conditions introduce a gap ∝ 1/T in
the spectrum, so that the determinant should be positive provided the volume is not
too large.
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Conclusions and Outlook

• Successful implementation of chirally rotated SF boundary conditions for even number
of GW quarks

• In the continuum limit the chirally rotated SF with an even number of massless GW
quarks is equivalent to the standard SF;

– parity and flavour symmetries are exact on the lattice!
– solution is technically simple: just requires the insertion of the corresponding Wilson

kernel into the Neuberger relation

• Construction applies directly to Domain Wall Quarks, technically simple, no obstruction
for mass term of Pauli-Villars fields.

• Work in progress: extension to odd numbers of flavours
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