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Introduction

Theoretically, topological susceptibility is defined as

X = [ ' (p(a)o(0)

where

|

p(2) = 2 Currti[Fyu (@) Fro ()

T.W. Chiu, Topological Susceptibility — p.3



Introduction

Theoretically, topological susceptibility is defined as

X = [ ' (p(a)o(0)

where
1

T3 ot Fyu (@) Fao (2

p(x) =

Veneziano-Witten relation

T.W. Chiu, Topological Susceptibility — p.3



Introduction

Theoretically, topological susceptibility is defined as

X = [ ' (p(a)o(0)

where
1
p(x) = @%mUtT[Fw(fﬁ)FAa(ﬂf)]

Veneziano-Witten relation

f2m2/
Xtop — Z i
i
Leutwyler-Smilga relation
>, T
Xtop = i (in the chiral limit)

i
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Introduction (cont)

Since

Xtop = /d% (p(x)p(0)) = %<Qf()p> . ) = volume

where

1 :
Qt()p:/d4 SQWQEWMU[F () F)\,(x)] = integer

one can obtain x,,, by counting the number of gauge
configurations for each topological sector.
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Introduction (cont)

Since

Xtop = /d% (p(x)p(0)) = %<Qf()p> . ) = volume

where

1 :
Qt()p:/d4 SQWQEWMU[F () F)\,(x)] = integer

one can obtain x,,, by counting the number of gauge
configurations for each topological sector.

However, for a set of gauge configurations in the
topologically-trivial sector, )., = 0, It gives x;,, = 0
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
POSSesSSs near-zero modes due to excitation of instanton

and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite

volume limit.
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Introduction (cont)

Even for a topologically-trivial gauge configuration, it may
POSSesSSs near-zero modes due to excitation of instanton
and anti-instanton pairs, which are the origin of
spontaneous chiral symmetry breaking in the infinite
volume [imit.

Thus, one can investigate whether there are topological
excitations within any sub-volumes, and to measure the
topological susceptibility using the correlation of the
topological charges of two sub-volumes.
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Introduction (cont)

For any topological sector with ();,,, using the translational
Invariance and the central-limit theorem, one can obtain

lim _{pla)p(y)) = -5 = =57 + 0@

|z—y|—00

(see T. Onogi’s talk)
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Introduction (cont)

For any topological sector with ();,,, using the translational
Invariance and the central-limit theorem, one can obtain

lim _{pla)p(y)) = -5 = =57 + 0@

|z—y[|—00
(see T. Onogi’s talk)

Thus, In the trivial sector with )4, = 0, for any two widely
separated sub-volumes (2; and (), the correlation of their
topological charges would behave as

~ Xty ) L
<Q1Q2> O 182y, @ /Q 37/?(37)

(/
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at two
time slices ¢; and ¢,, measure the time-correlation function

C(ty — 1) = (Q(t1)Q(t2)) = Y {p(x1)p(2))

L1,T2
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Introduction (cont)

On a finite lattice, consider two spatial sub-volumes at two
time slices ¢; and ¢,, measure the time-correlation function

C(ty — 1) = (Q(t1)Q(t2)) = Y {p(x1)p(2))

L1,T2

Then its plateau at large |t; — t5| can be used to extract
Xtop-

However, on a lattice, it is difficult to extract p(x)
unambiguously from the link variables !
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Topology with Overlap Dirac Operator

It is well known that the topological charge density can be

defined via the overlap Dirac operator as

1
p(x) =tr[ys(1 —=7rD)ss], 7= 2—7710
where D Is the overlap Dirac operator
H,
D:m0(1+V), V:”)/5 HZ,

w

Hw — 75(—m0 + fyﬂtﬂ + W)
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Topology with Overlap Dirac Operator (cont)

Here p(z) = tr|y;(1 — D), .| is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

a—>Q 1
397

p(z) 3 €t [F s () o ()]



Topology with Overlap Dirac Operator (cont)

Here p(z) = tr|y;(1 — D), .| is justified to be a definition
of topological charge density since it has been asserted
(Kikukawa & Yamada, 1998)

a—>Q 1
397

p(z) 3 €t [F s () o ()]

Note that the index theorem on the lattice

indeX(D) — N_ = Z ,0 Qtop

had been observed by Narayanan and Neuberger Iin
1995, using the spectral flow of H,(my), before the
Ginsparg-Wilson relation was rejuvenated in 1998.



Topology with Overlap Dirac Operator (cont)

It seems natural to use p(z) = tr|v;(1 —rD), .| to compute the
topological susceptibility
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Topology with Overlap Dirac Operator (cont)

It seems natural to use p(z) = tr|v;(1 —rD), .| to compute the
topological susceptibility

Qt == Z = {p()p(0))

45

On the other hand, one can derive the relation

index(D) =m Yy tr[ys(De +m); 5] = m Tr[y5(D. +m) ']

where
D,=D(1—rD) ' =2me(1+ V)1 -=V)!

IS chirally symmetric but non-local (Chiu & Zenkin, 1998). Note that
for the topologically-trivial confgurations , D, is well-defned (without
any pO I ES) . T.W. Chiu, Topological Susceptibility — p.10



Topology with Overlap Dirac Operator (cont)
Thus one can regard
pi(z) = m tr[y5(De +m), ]

as a defnition of topological charge density, for any valence quark
mass m.
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Topology with Overlap Dirac Operator (cont)
Thus one can regard

p1(x) = m trlys(De + m)g )

as a defnition of topological charge density, for any valence quark
mass m.

Obviously, the identity index(D) = m Tr[vs(D. + m)~!'] can be
generalized to

index(D) = myms - - myTr[v5(De + ma) ™ (De + ma) ™" -+ (Do 4 my,) ']
with the generalized topological charge density

Pk(x) = mimsy - - mktrh%(Dc + ml)_l(Dc + m2)_1 S (Dc + mk)_l]m,m
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Topology with Overlap Dirac Operator (cont)

Presumably, any p, can be used to compute .
In general,

X _mlo..mkmk+1...ml<
top — Q

Tr[vs(D. + mk+1)_1 o5 (Dl 4 ml)_1]>

Tefys(De + ma) ™"+ (Do 4 my) '] x
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Topology with Overlap Dirac Operator (cont)

Presumably, any p, can be used to compute .
In general,

X _mlo..mkmk+1...ml<
top — Q

Tr[vs(De + myps1) " -+ - (De +my) 7))

Tefys(De + ma) ™"+ (Do 4 my) '] x

It has been pointed out by Luscher, for £ > 2 and [ > 5,
Xtop @VOIdS the short-distance singularities in the
continuum limit.
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Re-derive the Leutwyler-Smilga relation (Chandrasekharan, 98)

Consider the (p = 0) flavor-singlet pseudoscalar (n ) correlator

Gy = Q Z )5 (2)P(y) 159 ()
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Lattice Setup (See Talks by Hashimoto, Kaneko, and Onogi)

Lattice size: 167 x 32

Gluons: lwasaki gauge action at 5 = 2.30

Quarks (n; = 2): overlap Dirac operator with m, = 1.6

Add extra Wilson fermions and pseudofermions
det(H?)

det(H?2 + 1?)

det(H?>,) — det(H?) , w=10.2

Quark masses: m,., = 0.015, 0.025, 0.035, 0.050,
0.070, 0.100, each of ~ 1000 confs with ¢);,, = 0.

For each configuration, 50+50 low-lying eigenmodes of
overlap Dirac operator are projected.



Preliminary Results (using 396 confs for each m.,)

On the 162 x 32 lattice, measure the time-correlation function

Clts — ) = (Q(t1)Q(t2)) = > (p(w1)p(2))

16°x32, $=2.30, m _, =m__ = 0.015
py(¥) = m trfyg(D+m) ™,
no. of configurations = 396

no. of low-lying eigenmodes = 50+50

N
—~
o
~
Cr 0.005
—~
N
o
A\
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Topological Susceptibility

) 32

0 Xtop = ~ 763 (Q(t1)Q(t2)),  |t1 —t2| = 16

163X32, B:2-3O’ M, =Mgey

P, (X) = m tr| Vs(Dc+m)_l]X.X

no. of configurations = 396

no. of low-lying eigenmodes = 50+50

i

T.W. Chiu, Topological Susceptibility — p.16



Realization of Leutwyler-Smilga relation

16°x32, p=2.30

2.0e-5 4.0e-5

(am)(@°z)/n,

In the limit m — 0, x:,, — Mm% /ny¢, in agreement with the
Leutwyler-Smilga relation !
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Chiral Condensate

16°x32, f=2.30, m

val_msea

no. of configurations = 396

no. of low-lying eigenmodes = 50+50

lim a*Y = 0.0023(1) (quadratic fit)

m—0

Use o' = 1690 MeV, Z, = 1.14(2), IM5(2 GeV) = (233 akeh MEM) S ey



Chiral Condensate (cont)

16°x32, f=2.30, m

val_msea

no. of configurations = 396

no. of low-lying eigenmodes = 50+50

lim a’Y = 0.0024(1) (linear fit)

m—0

Use a~! = 1690 MeV, Z, = 1.14(2), IM5(2 GeV) = (236 akeh MEM ) ey



Conclusion and Outlook

For the topologically-trivial gauge configurations
generated with ns = 2 dynamical overlap quarks
constrainted by extra Wilson and pseudofermions,
they possess topologically non-trivial excitations (e.g.,
Instanton and anti-instanton pairs) in sub-volumes.
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Conclusion and Outlook

For the topologically-trivial gauge configurations
generated with ns = 2 dynamical overlap quarks
constrainted by extra Wilson and pseudofermions,
they possess topologically non-trivial excitations (e.g.,
Instanton and anti-instanton pairs) in sub-volumes.

These near-zero modes allow us to determine
Xtop @Nd 2.

In the chiral limit, the Leutwyler-Smilga relation is
realized !

Similar studies for )y, = 2, and )y, = 4 sectors are
NOW In progress.
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