Approaching the Chiral Limit with Dynamical Overlap Fermions

T. Kaneko for the JLQCD collaboration

1High Energy Accelerator Research Organization (KEK)

2Graduate University for Advanced Studies

“Domain Wall Fermions at Ten Years”, March 15–17, 2007
1.1 introduction

- JLQCD: studying lattice QCD using computers at KEK

- w/ new supercomputer system (2006 –)
 - Hitachi SR11000, IBM Blue Gene/L (∼ 60 TFLOPS)

- large-scale simulations w/ dynamical overlap fermions

- computationally expensive ⇐ improvements of algorithm

- this talk: algorithmic aspects of production run for $N_f = 2$
 - lattice action / simulation parameters
 - our implementation of HMC
 - production run
2.1 Lattice action

- Quark action = overlap w/ std. Wilson kernel

\[D_{ov} = \left(m_0 + \frac{m}{2} \right) + \left(m_0 - \frac{m}{2} \right) \gamma_5 \text{sgn}[H_{W}(-m_0)], \quad m_0 = 1.6 \]

 - std. Wilson kernel \(H_{W} \Rightarrow (\text{near-})\text{zero modes of } H_{W} \)

- Gauge action = Iwasaki action \(\Leftarrow \) low mode density, locality

- Extra-fields \(\Rightarrow \) to suppress (near-)zero modes

 - Wilson fermion \(\Rightarrow \) suppress zero modes
 - Twisted mass ghost \(\Rightarrow \) suppress effects of higher modes

\[\text{Boltzmann weight} \propto \frac{\det[H_{W}(-m_0)^2]}{\det[H_{W}(-m_0)^2 + \mu^2]} \]

- Extra-fields \(\Rightarrow \) do NOT change continuum limit

\[\text{T. Kaneko} \quad \text{Approaching the chiral limit with dynamical overlap fermions} \]
2.2 simulation parameters

- \(N_f = 2 \) QCD
- Iwasaki gauge + overlap quark + extra-Wilson (\(\mu = 0.2 \))
- \(\beta = 2.30 \Rightarrow a \approx 0.125 \) fm
- \(16^3 \times 32 \) lattice \(\Rightarrow L \approx 2 \) fm
- 6 sea quark masses \(\in [m_{s,\text{phys}}/6, m_{s,\text{phys}}] \)
 \[m_{\text{sea}} = 0.015, 0.025, 0.035, 0.050, 0.070, 0.100 \]
- focus on \(Q = 0 \) sector
- test runs (500 – 1000 traj.)
 \((\beta, \mu) = (2.30, 0.2), (2.45, 0.0), (2.50, 0.2), (2.60, 0.0) \)
3.1 algorithm

- HMC w/ dynamical overlap quarks on BG/L
 - mult D_W: depends on machine spec.
 - mult D_{ov}: treatment of $\text{sgn}[H_W]$
 - overlap solver: choice of algorithm, 4D or 5D
 - HMC: Hasenbusch precond., multiple time scale

- multiplication of D_W ⇒ assembler code by IBM on BG/L
 - double FPU instruction of PowerPC 440D
 - double pipelines enable complex number add/mult
 - use low-level communication API
 - overlap computation/communication
 ⇒ ~ 3 times faster than our Fortran code
3.2 multiplication of D_{ov}

- Multiplication of $D_{ov} \ni \text{sgn}[H_W]$
 - $\sigma[H_W] \Rightarrow [\lambda_{\text{min}}, \lambda_{\text{thrs}}] \cup [\lambda_{\text{thrs}}, \lambda_{\text{max}}], \quad \lambda_{\text{thrs}} = 0.045$

- Low mode preconditioning
 - Eigenmodes w/ $\lambda \in [\lambda_{\text{min}}, \lambda_{\text{thrs}}] \Rightarrow$ projected out

- Zolotarev approx. of $\text{sgn}[H_W]$ for $\lambda \in [\lambda_{\text{thrs}}, \lambda_{\text{max}}]$
 - $N = 10 \Rightarrow$ accuracy of $|1 - \text{sgn}H_W^2| \sim 10^{-7}$

- Example of $\lambda[H_W]$ (test runs @ $a \sim 0.1$ fm, $m_{\text{sea}} \sim m_{\text{s,phys}}$)

W/ extra-Wilson

W/o extra-Wilson
3.3 4D overlap solver

inner loop:
- partial fraction form

\[
\text{sgn}[H_W] \ni \sum_{l=1}^{N_p} \frac{b_l}{H_W^2 + c_{2l-1}}
\]
- multi-shift CG (Frommer et al., 1995)

outer loop:
- relaxed CG (Cundy et al., 2004)
 - \(D_{ov}^\dagger D_{ov} \Rightarrow \text{CG}\)
 - \times 2 faster than unrelaxed CG

residual \(|D_{ov}^\dagger D_{ov} x - b|\)
vs # of \(D_W\) mult \((m_{sea} = 0.015)\)
3.3 5D overlap solver

Boriçi, 2004; Edwards et al., 2005

- \(M_5 = (\text{Schur decomposition}) \Rightarrow \gamma_5 D_{ov} = H_{ov} \) as Schur complement

\[
M_5 = \begin{pmatrix}
H_W & -\sqrt{q_2} \\
-\sqrt{q_2} & H_W \\
& \ddots & \ddots & \ddots \\
& & H_W & -\sqrt{q_1} \\
& & -\sqrt{q_1} & H_W \\
0 & \sqrt{p_2} & \cdots & 0 & \sqrt{p_1} \\
0 & \sqrt{p_1} & & & R \gamma_5 + p_0 H_W
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
A & 0 \\
0 & S
\end{pmatrix}
\begin{pmatrix}
1 & A^{-1} B \\
0 & 1
\end{pmatrix}
\]

\[
S = R \gamma_5 + H_W \left(p_0 + \sum_i \frac{p_i}{H_{W}^2 + q_i} \right) = \gamma_5 \left(R + \gamma_5 \text{sgn}[H_W] \right) \Rightarrow H_{ov}
\]
3.3 5D overlap solver

- \(x = D^{-1}_{ov} b \) from 5D linear equation

\[
M_5 \begin{pmatrix} \chi \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix},
\]

- even-odd precond.: implemented
- low-mode precond.: not yet...
 - \(\Rightarrow \) need small \(x_{\text{min}} \) and large \(N_p \)
 - \(\Leftrightarrow \) CPU time \(\propto N_p \)
- \(~4\) times faster than 4D CG

![Graph showing residual vs # of \(D_W \) mult]
3.4 HMC w/ 4D solver

- Hasenbusch preconditioning \((\text{Hasenbusch, 2001})\)

\[
\det[D_{ov}(m)^2] = \det[D_{ov}(m')^2] \det \left[\frac{D_{ov}(m)^2}{D_{ov}(m')^2} \right] = \text{“PF1” \cdot “PF2”}
\]

- \(m' = 0.2\) (\(m_{\text{sea}} = 0.015, 0.025\)), \(0.4\) (\(m_{\text{sea}} = 0.035 - 0.100\))

force (ave,max) at \(m_{\text{sea}} = 0.015\)

PF2 \(\ll\) PF1 \(\ll\) gauge \(\approx\) ex-Wilson

CPU time for force calc (512nodes)

PF2 \(\gg\) PF1 \(\gg\) ex-Wilson \(\gg\) gauge
3.4 HMC w/ 4D solver

- multiple time scale integration

\[\tau = 0.5 \]

3 nested loops:

PF2 : outer-most loop : \(N_{\text{MD}} \) times / traj.

PF1 : intermediate : \(N_{\text{MD}} R_{\text{PF}} \)

gauge, ex-Wilson : inner-most : \(N_{\text{MD}} R_{\text{PF}} R_{\text{G}} \)

<table>
<thead>
<tr>
<th>(m_{\text{sea}})</th>
<th>(N_{\text{MD}})</th>
<th>(R_{\text{PF}})</th>
<th>(R_{\text{G}})</th>
<th>(m')</th>
<th>(P_{\text{HMC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0.2</td>
<td>0.89</td>
</tr>
<tr>
<td>0.025</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>0.2</td>
<td>0.90</td>
</tr>
<tr>
<td>0.035</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>0.74</td>
</tr>
<tr>
<td>0.050</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>0.79</td>
</tr>
<tr>
<td>0.070</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>0.81</td>
</tr>
<tr>
<td>0.100</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>0.85</td>
</tr>
</tbody>
</table>
3.5 HMC w/ 5D solver

- Hasenbusch precond. + multiple time scale

\[
\det[D_{ov}(m)^2] = \det[D_{ov,5D}(m')^2] \det \left[\frac{D_{ov,5D}(m)^2}{D_{ov,5D}(m')^2} \right] \det \left[\frac{D_{ov}(m)^2}{D_{ov,5D}(m')^2} \right]
\]

\[= \text{“PF1”} \cdot \text{“PF2”} \cdot \text{“noisy Metropolis test”}\]

- sufficiently high “\(N_s\)” to achieve reasonable \(P_{\text{HMC}}\)

- factor of 2–3 faster than HMC w/ 4D solver

<table>
<thead>
<tr>
<th>(m_{\text{sea}})</th>
<th>(N_{\text{MD}})</th>
<th>(R_{\text{PF}})</th>
<th>(R_G)</th>
<th>(m')</th>
<th>(P_{\text{HMC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>13</td>
<td>6</td>
<td>8</td>
<td>0.2</td>
<td>0.68</td>
</tr>
<tr>
<td>0.025</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>0.2</td>
<td>0.82</td>
</tr>
<tr>
<td>0.035</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>0.87</td>
</tr>
<tr>
<td>0.050</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>0.87</td>
</tr>
<tr>
<td>0.070</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>0.90</td>
</tr>
<tr>
<td>0.100</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>0.91</td>
</tr>
</tbody>
</table>
3.6 reflection / refraction

- extra-Wilson fermion
 \[\Rightarrow \text{suppress zero-modes of } H_W \]
 \[\Rightarrow \text{switch off reflection/refraction step} \]
 - reflection/refraction is not rare event!
 (at \(a = 0.11 \text{ fm w/o extra-Wilson} \))
 \[\Rightarrow \text{factor of } \sim 3 \text{ faster} \]

\[\beta=2.35, \ m_{\text{sea}}=0.090 \]

\[\beta=2.45, \ m_{\text{sea}}=0.090 \]
4.1 production run

10,000 traj. ($\times \tau = 0.5$) have been accumulated

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>N_{MD}</th>
<th>R_{PF}</th>
<th>R_{G}</th>
<th>m'</th>
<th>traj.</th>
<th>P_{HMC}</th>
<th>$M_{\text{PS}}/M_{\text{V}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>0.2</td>
<td>2800</td>
<td>0.89</td>
<td>0.34</td>
</tr>
<tr>
<td>0.025</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>0.2</td>
<td>5200</td>
<td>0.90</td>
<td>0.40</td>
</tr>
<tr>
<td>0.035</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>4600</td>
<td>0.74</td>
<td>0.46</td>
</tr>
<tr>
<td>0.050</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>4800</td>
<td>0.79</td>
<td>0.54</td>
</tr>
<tr>
<td>0.070</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>4500</td>
<td>0.81</td>
<td>0.60</td>
</tr>
<tr>
<td>0.100</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0.4</td>
<td>4600</td>
<td>0.85</td>
<td>0.67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>N_{MD}</th>
<th>R_{PF}</th>
<th>R_{G}</th>
<th>m'</th>
<th>traj.</th>
<th>P_{HMC}</th>
<th>$M_{\text{PS}}/M_{\text{V}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>13</td>
<td>6</td>
<td>8</td>
<td>0.2</td>
<td>7200</td>
<td>0.68</td>
<td>0.34</td>
</tr>
<tr>
<td>0.025</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>0.2</td>
<td>4800</td>
<td>0.82</td>
<td>0.40</td>
</tr>
<tr>
<td>0.035</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>5400</td>
<td>0.87</td>
<td>0.46</td>
</tr>
<tr>
<td>0.050</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>5200</td>
<td>0.87</td>
<td>0.54</td>
</tr>
<tr>
<td>0.070</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>5500</td>
<td>0.90</td>
<td>0.60</td>
</tr>
<tr>
<td>0.100</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>0.4</td>
<td>5400</td>
<td>0.91</td>
<td>0.67</td>
</tr>
</tbody>
</table>
4.2 basic properties of HMC

area preserving

\[\Delta H \text{ at } m_{\text{sea}} = 0.025 \]

- a few spikes per \(O(10,000) \) trajectories: \(P_{\text{spike}} \lesssim 0.03 \% \)
- \(\langle \exp[-\Delta H] \rangle = 1 \) in all runs
- does not need "replay" trick

reversibility

\[\Delta U \text{ vs } \epsilon \]

\[\Delta U = \sqrt{\sum |U(\tau+1) - U(\tau)|^2 / N_{\text{dof}}} \]

\(\epsilon \): stop. cond. for MS/overlap solver

\(\Delta U \lesssim 10^{-8} \): comparable to previous simulations
4.3 effects of low modes of D_{ov}

- as approaching to ϵ-regime
 cost is governed by $\lambda_{ov, min}$ rather than m_{sea}

- too small volume?
 $$M_{PS} L \gtrsim 2.7, \quad \exp[-M_{PS} L] \Rightarrow \lesssim 1-2\% \text{ effects on } M_{PS}$$
 larger L for $m_{sea} \ll 0.015$
4.3 timing

D_W mult vs m_{sea}

- **CPU time [min] on BG/L x 10 racks**

<table>
<thead>
<tr>
<th>m_{sea}</th>
<th>CPU time traj. time</th>
<th>CPU time traj. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>2800 6.1</td>
<td>7200 2.6</td>
</tr>
<tr>
<td>0.025</td>
<td>5200 4.7</td>
<td>4800 2.2</td>
</tr>
<tr>
<td>0.035</td>
<td>4600 3.0</td>
<td>5400 1.5</td>
</tr>
<tr>
<td>0.050</td>
<td>4800 2.6</td>
<td>5200 1.3</td>
</tr>
<tr>
<td>0.070</td>
<td>4500 2.1</td>
<td>5500 1.1</td>
</tr>
<tr>
<td>0.100</td>
<td>4600 2.0</td>
<td>5400 1.0</td>
</tr>
</tbody>
</table>

CPU time $\propto 1/m_{\text{sea}}^{-\alpha}$, w/ $\alpha \sim 0.53$

naive expectation:

- $N_{\text{inv}} \propto 1/m_{\text{sea}}$
- $N_{\text{MD}} \propto 1/m_{\text{sea}}$

BG/L x 10 racks x 1 month \Rightarrow 4000 traj. at all m_{sea}
4.4 autocorrelation

- plaquette: local
 \[\Rightarrow \text{small } m_q \text{ dependence} \]
- \(\mathcal{N}_{\text{inv}, H} \): long range
 \[\Rightarrow \text{rapid increase as } m_q \rightarrow 0 \]
 \[\Rightarrow \text{may need large statistics} \]

T. Kaneko Approaching the chiral limit with dynamical overlap fermions
5. summary

- algorithm for JLQCD's dynamical overlap simulations
 - Hasenbusch precond. + multiple time scale MD + · · ·
 - 5D solver
 - extra-Wilson fermion to suppress (near-)zero modes
 ⇒ cheap approx. for $\text{sgn}[H_W]$, ⇒ turn off reflection/refraction
- effects due to fixed (global) topology \(^{(R.Brower \text{ et al.}, 2003)}\)
 - topological properties (χ_t, \ldots) ⇒ talks by T-W.Chiu, T.Onogi
 - Q-dependence of observables ⇐ simulations w/ $Q \neq 0$
 - suitable for ϵ-regime ⇒ talk by S.Hashimoto
- on-going/future plans
 - spectrum/matix elements ⇒ talks by J.Noaki, N.Yamada
 - simulations of $N_f = 3$ QCD
 - extend to larger volumes

(R.Brower et al., 2003)