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QCD and χ-symmetry

The interactions of the light mesons at low momenta are determined to a great extent
by the pattern of chiral symmetry breaking and therefore the QCD χ-Lagrangian is a
very usefull tool in light hadron phenomenology

Weinberg, Gasser and Leutwyler
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The weak interactions responsible for weak decays as ∆S = 1, 2 can also be included
and parametrized in terms of more constants

The lattice is the best non-pertubative method to bring in the missing information
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We need to do a precise macthing of lattice QCD and χ Lagrangian:

• because it is practical: parametrize non-perturbative dynamics in a minimum set of
LECs

• because the (lattice) world is never perfect...

Theoretically Practically

Ma ≪ 1 Ma ≥ 0.1

MπL ≫ 1 MπL < 5

ΛQCDL ≫ 1 ΛQCDL ∼ 2 − 3

A precise matching of Lattice QCD and χPT is a necessary milestone in Lattice QCD
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The need for exact χ-symmetry

Wilson-type regularizations: χ-breaking O(a2) can change the vaccuum structure in a
non-universal way when m ≤ aΛ2

QCD or m ≤ a2Λ2
QCD:

lim
m→0,V →∞

lim
a→0

Empirically in unquenched simulations with Wilson fermionsMπL ≫ 1 to avoid arbitrary
small eigenvalues ...

Del Debbio, et al

Thanks to Ginsparg-Wilson regularizations the matching can be done at finite a:

Ginsparg-Wilson, Kaplan, Shamir, Hasenfratz et al, Neuberger, Lüscher

Σ(a) = Σ + O(a2) F (a) = F + O(a2) Li(a) = Li + O(a2)...
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Small O(a2) violations

Scaling studies for overlap fermions show that O(a2) corrections are small for several
quantities such as FK, Σ

Wennekers, Wittig
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What χ-regime ?

lim
m→0

lim
V →∞

↔ MπL ≫ 1

Finite-size corrections are strongly suppressed and only m dependences remain...

χPT does not only predict the m corrections but also those of finite L !

p-regime: ǫ-regime:

lim
m → 0
V → ∞

˛

˛

˛

˛

˛

˛
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˛

˛

˛

˛

˛

˛

mΣV =O(1)
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Finite-size scaling in χPT
Gasser, Leutwyler

In a finite volume we can distinguish two regimes of χPT:

p-regime: mΣV ≫ 1 ǫ-regime: mΣV ≤ 1

mπ
−1

L L

mπ
−1

Standard χPT in finite V : Zero-modes of pions are not perturbative!

m ∼ p2 L−1, T−1 ∼ p m ∼ p4 L−1, T−1 ∼ p

m, L effects sizeable Only L effects sizeable
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Finite-size scaling in χPT

V = ∞ MπL ≥ O(1) mΣV ≤ O(1)

m a m a

V1

V2

V1

V2

V3

m a

C∞(m, Σ, F, Li, ...) Cp(m, L, Σ, F, Li, ...) Cǫ(m,L, Σ, F, Li, ...)
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Implies a reordering of the χ expansion: at any order less relevant couplings appear as
compared to the usual chiral expansion

Gasser, Leutwyler; Hansen; Hansen, Leutwyler; Damgaard, et al; PH, Laine

NLO: χ ≡ MU Lµ ≡ i∂µUU†, Wµν = 2(∂µLν + ∂νLµ); (∆ij)ab = δaiδbj
p-regime ǫ-regime

Gasser, Leytwyler HQCD L4 〈DµU†DµU〉 〈U†χ + χ†U〉 ×

L5 〈DµU†DµU
“

U†χ + χ†U
”

〉 ×

L6 〈U†χ + χ†U〉2 ×

L8 〈χ†Uχ†U + U†χU†χ〉 ×

Kambor,Missimer,Wyler H
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The role of topology in ǫ-regime

Correlation functions depend on topology in the ǫ-regime:

Leutwyler, Smilga (1992)

• Poles 1/m in quark propagators D−1
xy =

∑

i,zero modes
vi(x)vi(y)†

mV + ...

• Non-zero modes are repelled by the zero modes: For λ → 0:

ρν(λ) ∼ λ2(|ν|+Nf)+1

We can consider averages on fixed-topological sectors and the |ν| dependence becomes
a third scaling variable: χPT should reproduce this dependence

ǫ-regime:matching of L, |ν| dependences

p-regime:matching of m,L dependence
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The numerical Challenge

In the ǫ-regime: mΣV ≤ 1 , large fluctuations in the observables are observed:

〈λi〉ν =
O(1)

ΣV
, ∆λ = λi+1 − λi ∼

O(1)

ΣV
≥ m

Low-lying spectrum of Dm is discrete: ∆λ ≥ λk + m
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Space-time fluctuations in the wave-functions of the low-lying spectrum → large
fluctuations in point-to-all propagators!

Two strategies to tame these fluctuations:

• Low-mode averaging : treat low-modes separately

S(x, y) = Sh(x, y) + Sl(x, y), Sl(x, y) =
1

V

Nlow
X

k=1

vk(x)vk(y)†

λk + m

Degrand, Schaefer; Giusti, PH, Laine, Weisz, Wittig

• Physics from zero-mode wave-functions : use topological zero modes as probes

Giusti, PH, Laine, Weisz, Wittig
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ǫ-regime simulations

A number of ǫ-regime simulations have been performed in the quenched approximation
up to volumes of L ∼ 2 fm

• Condensate: Σ

PH,Jansen,Lellouch; Degrand; Degrand, Schaefer; Giusti,Necco

→ Necco’s talk

• Two-point functions: strong LECs such as F,α5, ...

Degrand, Schaefer; Bietenholz, et al; Giusti et al; Gattringer et al, BGR coll.; Fukaya et al

• Three-point functions: weak LECs

Giusti et al.
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L and |ν| scaling of current correlators

p-regime (NLO): Z2
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Test in V = 164/16332, β = 6.0, 0 ≤ |ν| ≤ 2

With the use of low-mode averaging we could simulation the ǫ-regime
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a m
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0.048

a 
F P

Giusti, PH, Laine, Weisz, Wittig 2004
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L and |ν| scaling of current correlators
PH, S. Necco et al, in preparation

lattice β V/a4 r0/a L[fm] Confs

A0 5.8458 124 4.026 1.49 388

A1 6.0 164 5.368 1.49 596

B0 5.8458 164 4.026 1.96 380

C0 5.8485 16332 4.026 1.96 826
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LECs from zero-mode wave functions

Giusti, PH, Laine, Weisz, Wittig (2004)

• For correlators computed in fixed topological sectors exact poles in 1/mn may appear
when some propagators are saturated by the zero modes

D
−1
xy =

X

i,zero modes

vi(x)vi(y)†

mV
+ ...

• The residuals of these poles are better conditioned in the IR than the correlators
themselves

One can match the residuals instead of the correlator in the ǫ-regime!

Cν(x − z, y − z) =
Resn

(mV )n
+ ... Resn = lim

m→0
(mV )nCν(x − z, y − z)
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F from zero modes wavefunctions

Consider the pseudoscalar density correlator in a topological sector of charge ν:

C
IJ
ν (x − y) =

D

P
I
(x)P

J
(y)
E

ν
, P

I
(x) ≡ Ψ̄(x)T

I
γ5Ψ(x)

The spectral decomposition of the propagators shows a pole in 1/m2 exists:

lim
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†
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F from zero modes wavefunctions

Remarkably in the ǫ-regime of χPT we find the same pole !

Matching at LO (h1(τ) ≡ 1
2

»

“

τ − 1
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− 1
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–
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At NLO, still the temporal dependence (A′(t), Ã′(t)) only depends on F !

In qChPT instead the singlet couplings enter at NLO: α, m0...
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Compared with the use of left-current correlators:

• No need to compute the low eigenvalues/functions, only |ν| zero modes

• No need to compute propagators

• All-to-all correlator automatic

• Deep ǫ-regime accesible

A test in the quenched approximation:

lattice β L/a r0/a L[fm] Nmeas(|ν| = 1) Nmeas(|ν| = 2)

B0 5.8458 12 4.026 1.49 880 696
B1 6.0 16 5.368 1.49 307 226

B2 6.1366 20 6.710 1.49 326 213
C0 5.8784 16 4.294 1.86 229 186
C1 6.0 20 5.368 1.86 83 78
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We found the quenched value F = 115(7)MeV(r0)
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L and |ν| scaling

Dν = L2A′′(T/2), D̃ν = L2Ã′′(T/2)
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A different look at the ∆I = 1/2 rule
Lüscher and Giusti, PH, Laine, Weisz, Wittig (2004)

Lattice QCD can investigate in a well defined way the role of the different scales that
enter in the problem, in particular the role of mc: if the large enhancement is due to the
large separation between mc ≫ ΛQCD or mc ≫ mu there should be no effect in the
theory with a light charm quark!

6

QCD ChPT

mc

mphys
c

ΛχPT

mu = md = ms

6

6

6

SU(4) SU(4)

SU(3)
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Weak effective couplings in SU(4) limit

Two four quark operator O± in the (84, 1) and (20, 1)

HChPT
w =

g2
w

4M2
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∗Vud
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F 4
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i

In contrast with SU(3), only two operators appear in SU(4)-ChPT at LO:
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1√
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2
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The Matching

We perform the matching by equating correlation functions of the weak operators and
two left currents in lattice QCD and in the chiral theory, more concretely the ratios:

Rσ(x0, y0) ≡
∑

x,y 〈[JL0(x)]αβ O±(0) [JL0(y)]γδ〉
∑

x
〈[JL0(x)]αβ[JL0(0)]βα〉

∑

y
〈[JL0(y)]αβ[JL0(0)]βα〉

gσ [Rσ(m, V,LECS)] = kσ(MW/Λ) Zσ(g0)

Z2
A

Rσ

↓ ↓ ↓ ↓
χPT P.T. − 2 loop N.P. Lattice

In the ǫ-regime at NLO: Rσ(x0, y0) independent of x0, y0, |ν| and any other LEC
different from g±

24



Tested in the quenched approximation:

β L/a T/a nlow L[fm] m # cfgs
ǫ-regime 5.8485 16 32 20 2 ms/40, ms/60 O(800)
p-regime 5.8485 16 32 20 2 m2/2 − ms/6 O(200)

The expected features of the Rσ(x0, y0) in the ǫ-regime: independence on x0, y0, m and
ν are well reproduced by the data
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g± in SU(4)-limit
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g± from zero-mode wave functions

PH, Laine, Pena, Torró, Wennekers, Wittig in preparation

We can define e.g.

R̄σ
ν ≡

limm→0(mV )2P

x,y〈∂x0
P a(x)O±(0)∂y0
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a
0(0) 〉ν limm→0(mV )

P

y〈∂y0P
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b
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Aν(x0, y0) ≡ −
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with ηi(x) ≡ vi(x+a0̂)−vi(x−a~0)
2
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Matching formula:

g±R̄±
ν =

[

k±(MW )
]

RGI

[

Z±

Z2
A

]

RGI

R̄±
ν

• The renormalization factor is the same as before !

• At LO the (q)χPT result is extremely simple:

R̄±
ν =

(

1 ∓ |ν|−1
)

+ ...

• NLO corrections are still quite large at 2 fm
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Advantages with respect to left-current correlators:

• 2 ×|ν| inversions versus 12 + 2 × Nlow to get
∑

x,y,~0,t0|x0−t0,y0−t0=fixed

• Even if no low-modes are computed
∑

~x,~y,~0

• Completely different observable in ǫ-regime: rather different chiral corrections

Exploratory Study:

β = 5.8458, V/a4 = 164, 1 ≤ |ν| ≤ 5, mΣV ∼ O(1), Nconf = 282
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Exploratory Study: 2PT

At NLO in χPT : Bν(x0) = αν + βν
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|ν| scaling of 2PT

αν = |ν| −
1

12
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The value of F from NLO terms is in reasonable agreement with other determinations
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Chiral Ward Identity from zero modes

The Ward identity relates the JP and PP correlators:

ZABν(x0 − y0) = lim
m→0

m
2
V

Z

d
3
x〈P

a
(x) P

a
(y)〉ν

Using the standard ZA determination
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Exploratory Study: 3PT
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There is a nice signal for R̄−
ν , less clear for R̄+

ν

Things seem to work as expected from the numerical point of view...but need longer
time extent: work in progress !
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Summary

• Fermion regularizations with exact chiral symmetry should allow us to do a precise
matching to χPT

• χPT can predict not just the scaling with the quark mass, but also with L and |ν|

• L, |ν| scaling in the ǫ-regime is less affected by unknown higher order LECs than the
scaling with m

• Many simulations have been performed in the ǫ-regime in the quenched
approximation: condensate, two and three-point functions and things seem to work
as expected...

• ǫ-regime simulations in the unquenched theory are becoming feasible...
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