Dynamics of Phase Transitions: $SU(3)$ Lattice Gauge Theory

Alexei Bazavov1 Bernd A. Berg1 Alexander Velytsky2

1Department of Physics, FSU
2Department of Physics and Astronomy, UCLA

July 31, 2006

Introduction
RHIC
The Order Parameter
The Structure Factor

Dynamics of Phase Transition
Scenarios of Phase Transitions
Spin Systems
Gauge Systems
The Linear Theory
The Debye Screening Mass
The Energy and Pressure Density
Polyakov loop correlations

Open Questions and Conclusion
Introduction: RHIC

Central collision of heavy ions followed by formation of fireballs

Fire-tunnel evolution (target rest frame)
Introduction: Setup

- $SU(3)$ pure gauge theory on a $N_T N_s^3$ lattice
- For a system in equilibrium notion of time is lost, so it has to be reintroduced
- We study the Glauber (heatbath) dynamics under a heating quench driving the system from the disordered into the ordered phase
Non-equilibrium studies performed along these lines include:

- Pioneering study of $SU(2)$ and $SU(3)$ pure gauge
- q-state Potts models, scaling in the infinite volume limit
- $SU(3)$ pure gauge theory, scaling in the infinite volume limit
- $SU(3)$ pure gauge theory, spatial expansion
- $SU(3)$ pure gauge theory, the finite volume continuum limit
The Order Parameter

The Polyakov loop is defined as

\[I(\vec{x}) = \text{tr} \prod_{m=0}^{N_t-1} U_{\vec{x}+m\hat{t},0} \]

where \(U \) are \(SU(3) \) matrices on the links of a hypercubic lattice. Its average value serves as the order parameter of the theory.

- The symmetry group of the order parameter in the \(SU(3) \) gauge theory is \(Z_3 \)
- Symmetric (confined) phase \(\langle I \rangle = 0 \)
- Broken (deconfined) phase \(\langle I \rangle \neq 0 \)
- The transition is weak 1st order
- Quarks smooth out this behavior, the transition becomes a rapid crossover
The Structure Factor

Two-point correlation function of the Polyakov loops ($\langle \ldots \rangle_L$ is the lattice average)

$$\langle l(0) l^\dagger(\vec{j}) \rangle_L = \frac{1}{N^3_\sigma} \sum_{\vec{i}} l(\vec{i}) l^\dagger(\vec{i} + \vec{j})$$ \hspace{1cm} (2)

The structure factor $F(\vec{p})$ is a Fourier transform of (2). After discretization and using periodicity of the boundary conditions one arrives at the expression

$$F(\vec{p}) = \frac{a^3}{N^3_\sigma} \left| \sum_{\vec{i}} e^{-i \vec{k} \cdot \vec{i}} l(\vec{i}) \right|^2$$ \hspace{1cm} (3)
Scenarios of Phase Transitions

- **Nucleation:**
 - instability against finite amplitude
 - localized fluctuations
 - has an activation barrier
 - metastable region
 - dominated by the growth of the largest clusters

- **Spinodal decomposition:**
 - instability against infinitesimal amplitude
 - nonlocalized fluctuations
 - no activation energy
 - unstable region
 - signaled by exponential growth of the structure functions
Geometrical vs. Fortuin-Kasteleyn clusters in 3-state 3D Potts model on a 40^3 lattice
Spin Systems: The Structure Factor

The first structure factor mode on N_{σ}^3 lattices for 3-state 3D Potts model
The first structure factor mode on $4 \times N^3_\sigma$ lattices in $SU(3)$
Infinite volume limit: \(N_{\tau} = \text{const}, \ N_{\sigma} \rightarrow \infty \)

Finite volume continuum limit: \(N_{\tau}/N_{\sigma} = \text{const}, \ N_{\sigma} \rightarrow \infty \), we study \(N_{\tau} = 4, 6, 8 \)

Rescale time axis so that all maxima coincide

\[
t' = \frac{t}{\lambda_t(N_{\tau}, T_f/T_c)},
\]

\(\lambda_t(N_{\tau}, 1.25) \) are 1:2.655:5.457 and \(\lambda_t(N_{\tau}, 1.57) \) are 1:2.768:6.362

To overcome the renormalization problem of (bare) Polyakov loop correlations divide all structure factors by their equilibrium values at \(T_f \)
The first structure factor mode on different lattices with the same physical volume for $T_f = 1.25 T_c$.

Gauge Systems: The Structure Factor
The first structure factor mode on different lattices with the same physical volume for $T_f = 1.57 T_c$
Dynamical generalization of the Landau-Ginzburg theory in the linear approximation results in the following equation for a structure factor:

\[
\frac{\partial F(\vec{p}, t)}{\partial t} = 2\omega(\vec{p}) F(\vec{p}, t) \tag{5}
\]

with the solution

\[
F(\vec{p}, t) = F(\vec{p}, 0) \exp \left(2\omega(\vec{p}) t\right), \tag{6}
\]

\[
\omega(\vec{p}) > 0 \text{ for } |\vec{p}| > p_c
\]

Rescale \(\omega'(\vec{p}) = \lambda_t(N_T, T_f/T_c) \omega(\vec{p})\) so \(\omega'(\vec{p})t' = \omega(\vec{p})t\)
The Critical Momentum

SU(3) determination of p_c for $T_f/T_c = 1.25$
The Critical Momentum

SU(3) determination of p_c for $T_f/T_c = 1.57$
The Debye Screening Mass

Fit results for p_c/T_c

<table>
<thead>
<tr>
<th>T_f/T_c</th>
<th>$N_T = 4$</th>
<th>$N_T = 6$</th>
<th>$N_T = 8$</th>
<th>$N_T = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>1.613 (18)</td>
<td>1.424 (26)</td>
<td>1.37 (10)</td>
<td>1.058 (79)</td>
</tr>
<tr>
<td>1.568</td>
<td>2.098 (19)</td>
<td>2.058 (22)</td>
<td>2.29 (15)</td>
<td>2.006 (73)</td>
</tr>
</tbody>
</table>

The critical momentum p_c is related\(^1\) by

$$m_D = \sqrt{3} p_c \quad (7)$$

to the Debye screening mass at the final temperature T_f after the quench:

$$m_D = 1.83 (14) T_c \quad \text{for} \quad T_f/T_c = 1.25, \quad (8)$$

$$m_D = 3.47 (13) T_c \quad \text{for} \quad T_f/T_c = 1.568 \quad (9)$$

The gluonic energy and pressure density, $T_f = 1.25 T_c$

$\varepsilon/T^4, N_\tau=4$
$\varepsilon/T^4, N_\tau=6$
$\varepsilon/T^4, N_\tau=8$
$3p/T^4, N_\tau=4$
$3p/T^4, N_\tau=6$
$3p/T^4, N_\tau=8$

The histogram for the order parameter (Polyakov loop) at the first time step on 6×24^3 lattice, $T_f = 1.57 T_c$
The histogram for the order parameter (Polyakov loop) at the time step where the structure function reaches maximum on 6×24^3 lattice, $T_f = 1.57 T_c$
The histogram for the order parameter (Polyakov loop) at the last time step (equilibrium) on 6×24^3 lattice, $T_f = 1.57 T_c$
Polyakov loop correlations

\[C_o(d, t) = \langle l(0, t) l(d, t) \rangle_L - \left(\langle |l(0, t)| \rangle_L \right)^2 \] \hspace{1cm} (10)
Open Questions

- No natural physical time scale
- Quarks: no heatbath dynamics
- Initial heating is not instantaneous
The Structure Factor in Effective Model

The first structure factor mode on 64^3 lattice, $T_f = 1.25 T_c$

Conclusion

- The phase transition proceeds through the spinodal decomposition scenario
- Domains of different *triality* slow down the equilibration
- The energy and pressure density evolve to equilibrium values
- The critical momentum is related to the Debye screening mass
- Correlations in equilibrium are weaker than in the out-of-equilibrium state
- Physical time scale can be set in effective models