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Why large N QCD?

e Large N phenomenology is interesting. It is usually close to QCD with three colors.

e Careful lattice studies have shown that it is possible to extract physical quantities in the
large N limit, particularly in the pure gauge sector.

e Strongly connected to string theories. Predictions from string theories should be compared
to large N results in QCD.

e There are N? gauge degrees of freedom but only N fermion degrees of freedom per
fermion flavor if the fermions are in the fundamental representation

e There is no back reaction from the fermions in the 't Hooft limit; The number of colors, /V
goes to infinity at a fixed 't Hooft coupling, A = g>N with a finite number of fermion flavors

in the fundamental representation.

e Fermions are naturally quenched in the 't Hooft limit.



A central gauge invariant observable

e We will consider large N gauge theories on a torus of size [. On the lattice, we will have L
and b, with b = 1/¢g°N and L going to infinity such that [ is held fixed.

o Let W € SU(N) denote the parallel transporter around a closed loop C' (Wilson loop) or a
closed loop that winds around the torus (Polyakov loop).

e The eigenvalues €%, k = 1,--- , N of W are gauge invariant and independent of the point
where the loop is opened.

e Consider the quantity p(6)d6 which is the probability of finding an eigenvalue ¢’ in the
range 0 < 6, < 0 + d6 for some k.

e The above observable will help us understand all the transitions we are interested in. It
contains information about traces of arbitrary powers of W. In this sense, it is a non-local
observable.



Transition In the plaguette distribution

e Consider the p(f) associated with an elementary plaquette.

e p(f) has no gap at lattice strong coupling and develops a gap around # = 7 as the coupling
gets weaker on the lattice.

e This is a bulk transition on the lattice. Only the phase with the gap has a continuum limit.
We call this the “cold” phase and denote it by “c”. The unphysical phase is the “hot” phase

and is denoted by “h”.

e This transition depends on the lattice action and is related to the cross-over seen in lattice
simulations at V. =2 and N = 3.

e It is the third order Gross-Witten transition in QCDs.

e This transition is first order in d = 3 and d = 4.



Phases of continuum large N QCD

e Consider p(f) associated with the Polyakov loops in different directions.
e If none of the U(1) symmetries are broken, p(#) will be uniform.

e A peak at some 6 in the distribution of p(6) indicates breaking of the U(1) symmetry in the
corresponding direction.

e Two dimensions: There is only the Oh and the Oc phase. Polyakov loops are not broken and
Eguchi-Kawai reduction holds on the lattice

e Three and four dimensions. There are several phases. There is the usual Oh phase and the
Oc phase. But we also have 1c, 2¢ and 3c phases in three dimensions and in addition a 4c¢
phase in four dimensions. The number of the phase corresponds to the number of
directions along which Polyakov loops are broken.

e There is a physical torus size associated with each one of these transitions.
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Large N QCD in three dimensions

View from the lattice
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Large N QCD in four dimensions
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Continuum reduction

e There exists a critical size [,. that separates the Oc phase ([ > [.) from the 1c phase (I < [,.).

e Continuum reduction holds in the Oc phase and the theory does not depend on [ if [ > [..
This theory is the confined phase off large N QCD,

e Chiral symmetry is broken in the Oc phase in the large N limit of QCD,4 and
lo (= 3
— ~ (0.65)".
A} ~ (0.65)
e Consistent with chiral symmetry breaking, m2 o m, and
frl. =~ 0.2609.
e [. ~ 1/T. and theory does not feel temperatures less than 7.

e The theory in the 1c phase behaves like finite temperature large /N QCD in the deconfined
phase.

e There is a finite latent heat associated with the Oc to 1c transition (J. Kiskis,
hep-lat/0507003)
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Fermion’s role in the 1c phase

e Fermions do matter in the 1c phase even in the 't Hooft limit in the usual sense that
boundary conditions of fermions matter in the temperature direction.

e Let # be the phase associated with the U(1) that defines the boundary condition with
respect to the phase of the Polyakov loop in the broken direction. Let # = 0 define
anti-periodic boundary conditions.

e The fermion determinant will depend on 6 and dynamics should pick 6 = 0.

e Consider the lowest eigenvalue of the overlap Dirac operator as a measure of the fermion
determinant and look at this as a function of 6.

e The data shows a gap in the spectrum for all 6 as long as 1" > 1... This shows strong
interaction in the color space.

e The gap is the biggest for § = 0.

e The gap is linear in 6 indicating free-field like behavior and the effect of the interactions in
color space is to lower the effective temperature.
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Chiral symmetry restoration in the 1c phase

e Work on a L x L, lattice for several couplings b such that they are all in the 1c phase.
Note that it is not necessary to pick L, = L. This freedom enables us to get several
temperatures for the same L on the lattice.

e Define the gap, G, to the average of the lowest eigenvalue of the overlap Dirac operator.

e Use L.(b) to define a dimensionless gap, g = G L.(b), and a dimensionless temperature,
t = LyL.(D).

e A plot of g vs ¢ shows that the data fall on a universal curve for small lattice spacing.

e The data fits 1.764/t — 0.93 for 1 < t < 1.5.

e There is clear numerical evidence for a first order phase transition in the fermionic sector.
e If we could supercool in the 1c phase below ¢t = 1, we would find 703l x5 (),93decontined

e Holographic models usually find a first order chiral transition.
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Model for the restoration of chiral symmetry

e Consider a gaussian Random Matrix model for a general complex matrix C'. Then consider
0 C

—CT 0
the eigenvalues i\ of D in this model. A single parameter, namely the chiral condensate 2,
fits QCD data to this model.

the massless Dirac operator as D = ) One can compute the joint distribution of

e This can be generalized to fit the data in the deconfined phase where chiral symmetry is
restored.

. 0 C' + 1w
e Consider D = (—CT i 0

Matsubara frequency at a given temperature.

> as the Dirac operator where w is the lowest

e This model undergoes a phase transition at some w. and we look at w > w, to match the
data in the chirally symmetric phase.

e The natural quantities to compare are 6, = \; — A\; for = > 1 since we have a soft edge in
the symmetric phase. There is evidence that the joint distribution of 6; in the random matrix
model agrees with QCD in the 1c-phase.
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Wilson loops with and without folding
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Durhuus-Olesen transition

e The eigenvalue distribution p(6, A) of Wilson loop operators in two dimensional QCD only
depends on the area and it is the Fourier transform on

1 1
N(TTW"} = ELS_)l(ZAn)e_A”

This is analytic but it results in non-analytic behavior in p(6, A) since it involves sum over n
from 0 to oo.

e Implicit formula exist for p(6, A) in the continuum for two dimensional QCD and one finds
that the distribution has a gap if A\ < 4.

e Using the notation of different phases in D > 2, the abobe transition is one seen in an
observable within the Oc phase of QCD,

e This phase transition also exists in QCD4 and separates the strong coupling phase of
continuum QCD from its weak coupling phase.
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Renormalized Wilson loop operator

The following steps defines a renormalized Wilson loop operator for a rectangular loop on the
lattice that was used to investigate the Durhuus-Olesen phase transition:

e APE smearing to eliminate perimeter and corner divergences:

X s f) = (L= AU (s f) +

f
u u ZU

§
1

¢ XD s XS a f)

_ ZU&” (2 18 the staple associated with U (  f)

- f is the smearing parameter and has to be in the range 0 < f < 0.75.

(@)

n-+1 . L n-+1 .
U (z; f) = X (2 f)

- UL(LO) (z, f) = U,(x), the original link element distributed according to the standard
Wilson plaquette action.

e The smeared variables define the renormalized Wilson loop operator,
(L1 + Ly)?

W[L1>L2;f;n — 1 I,

and the associated eigenvalue density /(6).
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The continuum operator Ww(, f)

e Lattice coupling: b = N
e Lattice spacing in Oc: a(b)t. = 1/L.(b)

e Pick L.; = Ly = L (square loop) with the physical size given by [ = La(b) and we will
measure this in units of ¢..

The continuum limit is taken at a fixed f and [ by taking a(b) to zero. The observable itself will
be p(0:1, f). We find that

e This non-local observable undergoes a transition from being gap-less for large [ (or small f)
to having a gap for small [ (or large f).

e There is a critical line in the ( f, [) plane given by f.(l) where p(0;1, f.(l)) is non-zero for all
—7m < 6 < mbut p(£m; 1, f.(l) = 0.

e p(0;1, f) exhibits universal behavior according to Durhuus-Olesen formulas and the
transition is continuous.
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