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Staggered thermodynamics

Equation of State : YA, Z. Fodor, S.D. Katz, K.K. Szabó
JHEP 0601:089,2006 [hep-lat/0510084]

Order of the transition : YA, G. Endrődi, Z. Fodor, S.D. Katz, K.K. Szabó

◮ Control most of the systematic errors in staggered thermodynamics
◮ We cannot address locality problem of staggered
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Systematic errors of the EoS
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Discritization error

Rorational symmetry breaking

Taste symmetry breaking
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Improving discritization error

Rotational symmetry breaking
◮ Symanzik (tree level) gauge action→ improves gauge sector
◮ Single (stout) link action→ does not improve f at T =∞

⋆ Large deviation from continuum SB
⋆ a → 0 behavior is very good
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Improving discritization error

Taste symmetry breaking,
local fluctuation of the gauge
field is responsible for

Reduced by the stout link
smearing
(Morningstar & Peardon).
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LCP: to be always on the physical point
The line of constant physics

mud(β), ms(β).

Tune ms using Nf = 3 degenerate
simulations and LO ChPT
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How close to the physical and continuum limit ?
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EoS procedure
integral along LCP
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Simulation Procedure

many β’s (16 pts for Nt = 4, 14 pts for Nt = 6)

given β, msim
s = mphys

s (β) fixed. → mphys
ud = mphys

s /25.
T 6= 0:

◮ msim
ud = mphys

ud .
◮ Ns = 3Nt .

T = 0:
◮ msim

ud = {3, 5, 7, 9} ×mphys
ud

◮ keeping Lsmπ > 3

finite size effect?
◮ less than stat. error for several β’s checked
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EoS
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EoS

Multiplied with cSB/cNt (cSB = limNt→∞
cNt ), Nt = 4(red), 6(blue).

Tc: inflection point of χI/T 2.
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ms −mud phase diagram

Columbia 1990.
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ms −mud phase diagram

Non-lattice approach
ms = mud →∞: global Z3 symmetry

◮ 3d, Z3 symmetric spin model:
◮ low T : symmetric phase: confined
◮ high T : broken phase: deconfined
◮ 1st order transition

( Yaffe & Svetitsky )

1/m = 0+
◮ small perturbation by external field

h ∝ e−βm (Banks & Ukawa)
◮ 1st order transition
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ms −mud phase diagram

Non-lattice approach

chiral symmetry:
(Pisarski & Wilczek)

◮ ms →∞, mud = 0: Nf = 2:
2nd order with O(4)

◮ ms = mud → 0: Nf = 3:
1st order

◮ m = 0+: 1st order
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ms −mud phase diagram

Nt = 4
Columbia 1990

Lattice approach
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ms −mud phase diagram

Lattice approach
ms = mud →∞:

◮ 1st order confirmed by lattice
⋆ 1st order (Columbia)
⋆ 2nd order (Ape)
⋆ 1st order by Finite Size Scaling

(Fukugita et al)
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ms −mud phase diagram

Lattice approach
ms →∞, mud = 0: Nf = 2:

◮ Wilson fermion confirmed O(4)
scaling

◮ Staggered: no O(4), O(2) scaling
observed.
1st order ? (Pisa)

◮ possible ∆τ artifact
(Philipsen Lattice2005)

Y. Aoki (U. Wuppertal) Thermodynamics at µ = 0 on the lattice RBRC workshop 14 / 19



ms −mud phase diagram

Lattice approach
ms = mud : Nf = 3: end point
(Bielefeld-Swansea)

◮ mπ,c = 290 MeV [standard, Nt = 4]
◮ mπ,c = 67 MeV [p4, Nt = 4]
◮ Large discretization error!
→ needs investigation on a
dependence
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ms −mud phase diagram

Very important to determine the
order at the physical point: all µ 6= 0
physics depend on this.

Position of the physical point:
open question in the continuum limit.

Very demanding to explore all the
mass range.

Perhaps doable to determine the
order at the physical point.
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Strategy

Exact algorithm (RHMC)

Finite size scaling
Correct quark masses

◮ tune ms and mu so that
ratios of mπ, mK , fK take
physical values.

◮ LCP2: mu = ms/27.3, ms →

Continuum limit
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Finite Size Scaling of chiral susceptibility χud

Ns/Nt = 3− 5(6).
No volume dependence found.
How about in the continuum limit ?
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Continuum limit of the peak hight
χ has power divergence, which should be subtracted.

∆χ = χ(T 6= 0)− χ(T = 0).

To make RG invariant quantity, mass squared is multiplied

m2
ud∆χ

T 4
c /(m

2
ud∆χ).
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Finite Size Scaling after continuum extrapolation
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→ Crossover
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Summary

Stout-link smearing improvement was used to reduce the taste
violation. Works quite well.

EoS

The equation of state was calculated with Nt = 4 and 6 lattices,
using LCP1 (approximation).

For the reliable continuum extrapolation, Nt = 8 simulation is
needed.

Order of the transition

Fine tuned LCP2 was used.

Continuum limit of chiral susceptibility was obtained using
Nt = 4, 6, 8, 10.

Finite Size Scaling was applied.

Cross-over was found for the physical point.

Tc ?
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