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Outline: Neural Networks for XANES and EXAFS data analysis

1. What is a neural network used for? How do they 
work?

1. How can we frame XANES and EXAFS data 
analysis as a machine learning problem?

1. A few past examples.

1. Some guidance if you want to DIY.



“short course on x-ray spectroscopy. taught by dogs. in space.”

“3d render. photoelectron backscattering off Anatoly's head”

The (generative) AI revolution is currently underway.

labs.openai.com last year: 2022



“short course on x-ray spectroscopy. taught by dogs. in space.”

“3d render. photoelectron backscattering off Anatoly's head”



3d render . a lattice of atoms. but the atoms are cat paws

2022 2023



…. and now we have ChatGPT
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First, let’s take a step back.

What’s the point of modeling data, and data analysis in general?

Observations Model

Parameters

Predictions

• A model that explains the observations and can accurately predict new observations is general.

Generative factors

• The hope is that a model can be created in which the model parameters are functions of the generative factors. In this 
case, the model can be used to extract useful information from the observations.

?

Generative factors ModelObservations

(More general)

(More general?
more flexibility with 
parameters?)How deep should we go?

(Neural 
network)



Neural Networks, conceptually.

Neural networks are

• Mathematical models of human neurons
• non-linear functions
• Universal approximators
• Chains of nodes linked together by non-

linear functions
• A mathematical object constructed of 

linked matrices and/or vectors.

Neural networks are trained to

• Transform an input into an output.
• Map inputs to outputs.
• Predict outputs given an input
• Learn the relationship between the 

input and the output.
• Learn a representation of the input 

so that the representation allows for 
the prediction of the output.

• Minimize the difference between 
the input and the output

Neural networks learn by:

• Optimization of weights and biases.
• The minimization of a loss function.
• Seeing many examples of inputs and associated 

outputs.
• Receiving rewards when it gets the answer right.
• Being rewired or destroyed when it gets the 

answer wrong.

Depending on your background and context, one of these 
statements make more sense to you than the others. (the concept 
is encoded (parameterized) in terms of our experiences)
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Neural Networks, ELI10.
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Neural Networks. training, and testing. ELI10.
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Some observations

random data point

Function

Layer 1

Input

Layer 4

Output

Layer 2 Layer 3

Iterations
Realtime model training

How does the cost function change with respect 

to the weights? i.e.

Local min

Global min

Optimization of the loss function

TanhReLu

Under the hood

Layer 2 Layer 3 OutputInput

“activation function”

Putting it all together. A real example.



Neural Networks: Architectures
asimovinstitute.org/neural-network-zoo/

https://www.ibm.c
om/cloud/learn/co
nvolutional-neural-
networks

Convolutional



MLP CNN-MLP

ML
P

ML
P

ML
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CNN-
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CNN-
MLP

CNN-
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B)

A) The training data and two sets of test data.

A) Training MLP and CNN-MLP to predict the 
maximum value from each curve.

A) MLP and CNN-MLP predicted vs. true plots for 
training and testing data.

C)

Test-1 data

Training data

Test-2 data

A) max (multilayer perceptron) (convolutional neural network)

The choice of architecture influences generalization. Generalization is key.

EXAMPLE to demonstrate the idea

The MLP has a problem 
with the orange data!

There are points when 
the CNN-MLP does well 
on all three data!

For the best training round

Orange bad

All three ok! But could do better



The choice of architecture influences generalization. Generalization is key.

Test-1 data

Training data

Test-2 data

A) max

• This is important because this is the exact situation that we are dealing with. 

• Theory does not exactly match the experiment.
• It can get close. 
• Qualitative trends are usually reproduced

• Bottom line: we need models that bridge the gap between theory and experiment.

e.g., orange is experiment, 
blue and red are two different 
theories.



Aleatoric Uncertainty: Due to inherent noise in the data

Epistemic Uncertainty: Due to model uncertainty; the model doesn't know 

what it doesn't know.

What about uncertainties?

Aleatoric

- Random stochastic differences in the 

model parameters that were 

determined in training

- Noise in experimental data

- Noise in theoretical data

Epistemic

- Correlated variables are not 

separated. or are just unknown.

- The training data and experimental 

data are too different.

- Ensemble Methods: Train multiple models 
and use the variance of their predictions.

- Bootstrapping: Resample the training data 
with replacement and train multiple 
models.

- Test-set benchmarking: Test multiple 
trained models on data that was not 
included in the training set. Use the 
variance of their predictions to estimate 
uncertainty.



NNs in XANES and EXAFS
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XANES, EXAFS 

Shape changes
Transformations

Restructuring of 

bimetallic catalysts

Nanoparticles

N. Marcella, P. Routh, S. Xiang, 

K. Zheng, M. Mahboob, S. D’Halleweyn, 

R. Shimogawa, Y. Liu, J. Timoshenko

D. Lu, 

Y. Lin



Au L3

Pt L3
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🡨 Noise

🡨

Glitching

Sometimes…

• When EXAFS is inadequate, XANES is usually available.

NNs for XANES

Idea: we know the XANES is related to the local structure of the material being investigated. A neural network should be 
able to learn (model) the spectrum-structure relationship.

Training data:
• We need XANES spectra labeled with some structural 

characteristics.
• Getting the training set experimentally is impossible.
• We can use ab initio codes (FEFF, FDMNES, or OCEAN) to 

calculate the spectrum from atomistic models.  

Testing data:
• Experimental XANES spectra with good quality EXAFS for 

labeling structure parameters. 

In this case (AuPt):
- The Au edge cuts off the Pt edge.
- Pt contributions exist in the Au 

edge that are not easily fit.



Output: average coordination numbers for the 1st, 2nd, 3rd, … coordination shells

Site-specific coord. numbers

Number of atoms in particle

Timoshenko, Frenkel et al,

J. Phys. Chem. Lett., 8, 5091 (2017)

This approach was successful for 
determination of local structure in Pt 
nanoparticles:

NNs for XANES



Timoshenko, Frenkel. ACS Catalysis 2019 9 (11), 10192-10211

Pt nanoparticles

MLP works fine, no special treatment needed.

What about the agreement between theory and experiment

Validation of the model on 
well-defined systems is 
required.

If you can’t check the 
model against “true” 
values, an alternative 
validation scheme should 
be developed.
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Training data:
• Large set of XANES spectra labeled with “True” 

coordination numbers.
• We can use ab initio code (FEFF9) to calculate 

the spectrum from atomistic models.
• Diversity: neural networks are interpolative. We 

include many variations in particle size, shape, 
composition, compositional distribution, lattice 
constant.   

Validation / Testing data:
• Experimental XANES spectra with good quality EXAFS for labeling 

structure parameters. 

XANES inversion: spectrum to structure

Pd 
sites

Au 
sites

(XANES)   (coordination number)

Marcella et al. Phys. Chem. Chem. Phys. 22, 18902-18910, 2020.
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Decoding reactive structures

Refining the active sites with experimental 
and theoretical activity modeling 

Marcella et al. Nature Commun. 13, 832 (2022)  
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Previous machine learning works are supervised, i.e., they require us to label our training data

The future may rely on unsupervised approaches. Routh, Liu, Marcella et al. J. Phys. Chem. Lett. (Perspective) 12, 2086-2094, 2021.

Latent 
space

“bottlenec
k”

• Autoencoder creates compressed latent 
representation of the input space.

• Dimensionality of the latent space is related to 
the information content in the input space

• Unsupervised and generative modeling allows to 
learn latent variables and correlate them with 
physical variables (descriptors)

Key findings:

NNs for XANES: unsupervised learning



If we can decode the latent space, we have 
access to all varying information contained 
in the XANES spectrum.

Example latent space

Pd nanoparticles

The autoencoder has no idea what coordination number, 
distance, or hydrogen fraction is, however, we find this 
information stored in the latent space.

Experimental 
data

Theoretical data

NNs for XANES: unsupervised learning

Neural Network



NN-EXAFS – workflow

WT-EXAFS

Re(WT)

Arg(WT)

R
e(W

T)
A

rg(W
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Fully connected Multilayer Perceptron 
(MLP) using Tanh activations
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Au Foil

Pd83Au17 Nanoparticles
Timoshenko and Frenkel et al.,Nano Letters 19, 520-529 (2019)

Use neural network to extract g(r) from EXAFS

(absorber-specific radial distribution function)
Au in this case

NNs for EXAFS



Produce training data:

3D Structure model (xyz coordinates)

Jiggle

MD for x time steps
@ some temp

Average structure over x time steps

FEFF FEFF 

Distance matrix for 
each time step. 

Histogram

g(r)

r (Å)

Build in:
1) Particle size
2) Crystallographic structure
3) Lattice parameter
4) Composition
5) Segregation motifs
6) Whatever you want...

Au-Au, Au-Pd



NN-Model Validation with experimental data
How do we prove that the trained NN-model is valid?

Reconstruction of PRDFs in bimetallic 

compounds by NN method: 

Au—Pd and Au—Au (A) and Pd—Pd and 

Pd—Au (B) PRDFs obtained from Au L3-

edge and Pd K-edge EXAFS for PdAu NPs 

with different Pd concentrations.

Timoshenko and Frenkel et al.,Nano Letters 19, 520-529 (2019)



NNs as theory surrogate

Unraveling the catalytic effect of hydrogen 

adsorption on Pt nanoparticle shape-change

arXiv:2306.00901 [cond-mat.mtrl-sci], 2023

Input Output

Structure Spectrum



NNs as theory surrogate Input Output

Structure Spectrum
A. Martini et al. J. Am. Chem. Soc.
2023, 145, 31, 17351–17366



NN for denoising Input Output

XANES Noise

9.9 8.5

Input Output

xyz CN

NN for counting





If we want to “Use neural network to extract descriptors from the XANES and EXAFS”, then we need:
1) to have training data for which we know this relationship.
2) Determine the best way to preprocess the data
3) Find a way to validate the NN model – ideally using experimental data for which we know the relationship.

Implementing a machine learning algorithm has been made relatively easy by the various software packages and billions of 
online tutorials, books, videos, etc…

e.g.
Mathematica https://www.wolfram.com/mathematica/
Python (most common, various libraries) https://www.anaconda.com/
MATLAB https://www.mathworks.com/products/matlab.html

DIY

2) The hard part is related to the training data, because at the end of the day, “garbage in, garbage out.” 

Toyao et. al, ACS Catal. 2020 10 (3), 2260-2297

1) Frame your observations in terms of generating factors. Decide what parameters are reasonable to extract from the signal.

https://www.wolfram.com/mathematica/
https://www.anaconda.com/
https://www.mathworks.com/products/matlab.html


Training data



e.g., training data PdAu XANES NN.

What do you expect the real system to look like, how might it behave, is it dynamic? You must create a training dataset 
that interpolates the entire space of possibilities

Configuration space is 
huge in bimetallic NPs



39

(Å)

“Real”

atomistic

First nearest neighbor scattering

Number of paths

Experimental

Sum of scattering paths

If you are looking at EXAFS, don’t forget the training space must include dynamic and static disorder!



Deviation in time-average 
XANES

Spectrum from the Mean
Low High

In some cases, you can decrease the size of the training data set by performing a sensitivity analysis. For example, some 
nanoparticles may have symmetrically-equivalent sites that can be approximated by one unique site. If interested in 
dynamics, some sites may be less sensitive to changes in thermal vibration than others, and thus one could sample 
them less.

Static cases Dynamic cases

# of Unique Sites

“Unique” depends on the size of the radius considered around the site
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