Practical Issues Related to sc-CO$_2$
Well Construction for CO$_2$
Sequestration Projects

Brookhaven National Lab
Supercritical Carbon Dioxide &
Materials Interaction
Overview

Cement Systems & Cementing
- Chemical Durability of cements
- Mechanical durability of cements
- Mud Displacement Factors
- Cement Placement & Reverse Circulation
- Case History

Casing and Well Design
- Casing Design
 - Connections
 - Metallurgy
- Well design Optimization
- Identify chemistry of injection fluid
Chemical Durability of Cement

Temperature Related
- Previously 30 - 40% additional crystalline silica was thought enough to provide strength stability
- New published data up to 600 °F shows a need of up to 70% Silica added for strength stability

Chemical Attack
- Chemical attack
 - CO2
 - H2S
- Need resistance to chemical attack
 - Latex Cements
 - Fly Ash / Calcium Aluminate cement blend
 (Developed by Sugama of BNL)
Mechanical Durability

Cyclic Stress Loading

• Pressure induced
 – Injection
 – Stimulation
 – Swapping out fluids of different density

• Temperature Induced
 – Drilling
 – Production
 – Injection

Cement Failure
Conventional Cement - 2D Modeling

Thermal Stress, $\Delta T = 200^\circ C (360^\circ F)$

Tensile Failure Occurs!!
Ductile Cement - 2D Modeling

During heating plastic strains develop but NO cracking or de-bonding occurs.

Thermal Stress, $\Delta T = 200^\circ C (360^\circ F)$
Cement Durability

Conventional Cement Ductile Cement
Mud Channeling

- Allow contact of casing with well fluids - CO2 & Water
- Allow Interzonal Communication
 - Lost Production
 - Unwanted Production
 - Corroded Casing
Displacement Factors

- Mud Conditioning
- Mechanical Aids
 - Pipe Movement
 - High Port Up-Jet Float Shoe
- Centralization
- Fluid Velocity
- Spacers & Flushes
Definition of Standoff and Displacement Efficiency

Standoff = \(\frac{C}{A-B} \)

Displacement Efficiency = Cemented Area / Annular Area
Mud Conditioning

- LOW MOBILITY MUD
- MOBILE MUD
- FILTRATE
- FILTER CAKE
- CEMENT
- CASING
- FORMATION
Pipe Movement

- Removes Gelled Mud
- Rotation or Reciprocation
Centralization

• Centralization critical for complete mud displacement
Centralization

<table>
<thead>
<tr>
<th>Standoff</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>45</td>
</tr>
<tr>
<td>35</td>
<td>77</td>
</tr>
<tr>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>72</td>
<td>97</td>
</tr>
</tbody>
</table>
Affect of Flow Rate

Plug Flow Laminar Flow Turbulent Flow
Velocity

<table>
<thead>
<tr>
<th>Rate (bpm)</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>98</td>
</tr>
</tbody>
</table>
Spacers and Flushes

- Fluid Compatibility
- Fluid Separation
- Aid in Mud Displacement
- Formation Protection
- Solids Suspension
Cement Placement

Reverse Circulation Cementing
Reverse Circulation

Key Advantages

- Reduced hydraulic horsepower
- Reduce ECD’s
- Shorter cement thickening times
- Reduced cost for retarder
- Quicker strength development
- Improved safety and environmental management

Conventional vs. Reverse
Lower ECD - Reverse Circulation

Conventional Circulation

Conventional Circulating Pressure and Density at Fracture Zone.

- Circulating Pressure
- Hydrostatic Pressure

Reverse Circulation

Reverse Circulating Pressure and Density at Fracture Zone.

- Circulating Pressure
- Hydrostatic Pressure

AltaRock Confidential
Key Advantages

Reduced ECD

• Conventional circulation involves lifting heavy cement in a small annulus

• Reverse Circulation involves lifting drilling fluid through nearly entire job with little flow restriction of mud in casing
Key Advantages

Short TTT/Reduced Cost
- Conventional circulation
 - 100% of cement exposed to BHCT
 - Added time to displace
- Reverse Circulation
 - Only lead portion exposed to BHCT
 - Retarder can be staged / reduced during job
 - No Displacement time
- Faster Set Time
Operational Challenges

- Determining Cement Location
- Rig-up
- Job Design and Execution
- Float Equipment
Case Histories

• 26 Jobs have been done in the West Coast Region since 2002
 – All geothermal except 3 jobs
 – Majority were volumetric w/ gamma ray tool and radio active tracer

• Locations
 – CA
 – Hawaii
 – Nevada

<table>
<thead>
<tr>
<th>Depth, ft</th>
<th>Pipe Size, in.</th>
<th>Slurry Type</th>
<th>Slurry Volume, bbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,012</td>
<td>8 5/8</td>
<td>Conventional</td>
<td>135</td>
</tr>
<tr>
<td>3,774</td>
<td>13 3/8</td>
<td>Latex</td>
<td>721</td>
</tr>
<tr>
<td>5,012</td>
<td>13 3/8</td>
<td>Conventional</td>
<td>731</td>
</tr>
<tr>
<td>1,700</td>
<td>9 5/8</td>
<td>Conventional</td>
<td>130</td>
</tr>
<tr>
<td>3,180</td>
<td>9 5/8</td>
<td>Conventional</td>
<td>232</td>
</tr>
<tr>
<td>1,802</td>
<td>13 3/8</td>
<td>Conventional</td>
<td>230</td>
</tr>
<tr>
<td>3,645</td>
<td>13 3/8</td>
<td>Foam Latex</td>
<td>548 (base)</td>
</tr>
<tr>
<td></td>
<td>13 3/8</td>
<td>Conventional</td>
<td>140</td>
</tr>
<tr>
<td>1,989</td>
<td>13 3/8</td>
<td>Conventional</td>
<td>450</td>
</tr>
<tr>
<td>3,675</td>
<td>13 3/8</td>
<td>Foam</td>
<td>635 (base)</td>
</tr>
<tr>
<td>1,450</td>
<td>7</td>
<td>Conventional</td>
<td>80</td>
</tr>
<tr>
<td>5,000</td>
<td>11 3/4</td>
<td>Foam</td>
<td>995 (base)</td>
</tr>
<tr>
<td>16,593</td>
<td>7</td>
<td>Conventional</td>
<td>506</td>
</tr>
<tr>
<td>5,000</td>
<td>11 3/4</td>
<td>Foam</td>
<td>440 (base)</td>
</tr>
<tr>
<td>9,900</td>
<td>7</td>
<td>Conventional</td>
<td>1200</td>
</tr>
<tr>
<td>7,902</td>
<td>7</td>
<td>Conventional</td>
<td>325</td>
</tr>
<tr>
<td>3,608</td>
<td>13 3/8</td>
<td>Conventional</td>
<td>370</td>
</tr>
<tr>
<td>3,350</td>
<td>13 3/8</td>
<td>Latex</td>
<td>665</td>
</tr>
<tr>
<td>3,290</td>
<td>9 5/8</td>
<td>Latex</td>
<td>100</td>
</tr>
<tr>
<td>1,868</td>
<td>13 3/8</td>
<td>Conventional</td>
<td>370</td>
</tr>
<tr>
<td>3,800</td>
<td>13 3/8</td>
<td>Foam</td>
<td>560 (base)</td>
</tr>
<tr>
<td>2,065</td>
<td>2 7/8</td>
<td>Foam</td>
<td>60 (base)</td>
</tr>
<tr>
<td>3,719</td>
<td>13 3/8</td>
<td>Foam Thermalock</td>
<td>440 (base)</td>
</tr>
<tr>
<td>14,007</td>
<td>7 5/8</td>
<td>Conventional</td>
<td>207</td>
</tr>
<tr>
<td>11,170</td>
<td>10 3/4</td>
<td>Conventional</td>
<td>426</td>
</tr>
<tr>
<td>2,250</td>
<td>7</td>
<td>Conventional</td>
<td>160</td>
</tr>
</tbody>
</table>
Case History

Well Details
- New Production well
- CO2 zone @ 1200 ft.
- Past history of casing failure at that depth
- Problem cementing 13-3/8 inch casing due to lost circulation

Solution
- Used Foam cement for improved mechanical properties
- Used CO2 resistant blend to protect from CO2 attack
- Placed with reverse circulation
Casing Design

- Metallurgy of casing must be considered for expected environment
- Each Casing String must be evaluated for each well
- Carbon steel, high alloy, titanium, etc.
Casing Connections

- High Stress occurs in connections during thermal cycling
- Premium connections preferred over buttress

- a - compression loading
- b - Tension loading
- c - Non deformed
Summary and Conclusions

• Drilling sc-CO2 wells involves additional design challenges above normal geothermal and/or storage wells
• Mechanical and chemical cement durability must be taken into consideration
• Modeling of stress on cement and casing recommended for all designs
• Cement must cover entired casing annulus

• Special cement systems must be used when exposed to CO2 in presence of water
• Casing corrosion must be considered and needed metallurgy used to prevent corrosion
• Factors affecting displacement efficiency must be considered to insure competent cement sheath placement
• Chemical and mechanical considerations for casing design
Questions??

Comments??