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Can we develop rules to evaluate caprock quality?
How much CO2 could leak through the 

Eau Claire caprock formation?
Well perforations (age, cement, plug…)
Permeability thru fracture networks

existing & induced fractures
Idealized fracture 
cross section

Eau Claire
Caprock formation

Mount Simon
Sandstone
storage formation

Will CO2-acidified brines impact permeability over time?

0.05 mD

180 mD



Model inputs based on what we’ve got?

Formation mineralogy
Brine chemistry
 Thermodynamic and kinetic terms 

derived from homogeneous batch 
studies

Quartz (50-90%)
Feldspar (5-30%)
Dolomite (5-20%)

Quartz (63%)
Feldspar (19%)
Dolomite (8%)
Clay (9%)

Eau Claire
caprock 

Mount Simon
Sandstone
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The real picture is far more complex

Spatial heterogeneity
Unique mineralogy at fracture 

surface
 Potential for preferential flow 

paths

Optical image 
of thin sections

How big could we get it wrong?



X-ray microprobe can provide unique spatial information  

Constrain accessible surface area 
term (high sensitivity)
 Derive empirical relationships 

between pore-space and 
geochemical properties 

element composition (µXRF)
mineralogy (µXRD)
element speciation (µXAS)

Define maximum achievable ion 
concentrations

Rock thin section

Spatial resolution often 
limited by sample 
thickness



SEMSEM

BSE

• Pore space scale (see scale bar)
• Mineralogical & Geochemical 

heterogeneity 

Mt Simon sandstone
Sub-core from Muskegon Co. Michigan
WMU Core Lab (Dave Barnes)

Images by Brian Ellis & Jeff Fitts

10 µm

500 µm

SEM and BSE images of fracture surface

Spatial heterogeneity adds significant complexity



Mt. Simon horizontal orientation
30µm thick section

µXRF: Quantify Fe, Ca, K (Ti, Mn) spatial distribution

Fe

K

How do we represent  so much spatial heterogeneity?

Ca

• Define pore space
• Constrain accessible surface area
• Quantify Fe, K, Ca content within pore space 
and pore surface coatings
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K

Spatial distribution of accessible minerals
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Phases identified
Silicates
Calcite, dolomite
Pyrite (?), hematite

µXRD – crystalline phase identification

• Define pore space mineralogy
• K, Ca content in primary grains, 
which is inaccessible 



Wilke et al. American Mineral. 2001
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Define spatial distribution of Fe oxidation state & coordination

Centroid = 7112.7eV

Centroid = 7113.5eV

Centroid = 7113.7eV

Fe oxidation state & coordination

?

Fe µXANES
Fe

Fe µXANES
pre-edge
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Dream experiment: What are the actual dissolution rates of 
these calcite & dolomite bands during acidified brine flow? 

We need:
 3-D Images at multiple time points 

Maintain registry with x-ray beam
 P/T-dependent rates 

Flow-thru sample cells
 Spatially resolved rates

Good image segmentation
 Precision trace element conc.

High XRF sensitivity 
 Mineralogy imaging tomography

Diffraction & diffuse scattering

Amherstburg formation
carbonate caprock
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Online mode: flow-thru CO2-brine at P/T
Jeff’s lab at BNL 

Online/offline in situ synchrotron-based x-ray tomography

Schoonen Lab (Stony Brook) has working  
system with PEEK tubing

Note: confining pressure not feasible

Offline mode: mini-core closed off and 
transferred to beamline at P/T 

NSLS Beamline X27A & X26A; X2

Maintain hydrostatic pressure: 
stop-cock or BPR

Temperature: radiant or gas 
blower heating

ISCO

Brine-CO2 
@ P/T



X27A: Top view - x,y,z & rotation

Beam

X-ray beam
E= 20 keV
Focused: 7x10microns (VxH)

Solid state Ge detector 
snout for fluorescence

Ion chamber

Optical microscope

X1,Y1,Z 
sample stage

Rotation stage (χ) & goniometer (X2,Y2,γ,ρ) 

CCD for
diffraction

Focusing mirrors

Pin-diode for 
phase contrast

Monchromator

X-ray Microprobe beamline (NSLS beamlines X27A, X26A)



X26A tomo: single slice, phase contrast with pin-diode detector

Composite map
Rb (Red) and Sr (Blue) overlay 
on pin-diode (Green)

(µm)

Single 6µm 
thick slice

Calibrate x-CMT 
w/ XRF CMT



Surface phase coating silica grains? 
X26A tomo – Rb, Sr, Fe

(µm) (µm) (µm)

(µm)

Silica absorbs Fe Kα
fluorescence at 7 keV



Need to register with CT imaging

Brian Ellis, Princeton University



Conclusions & future directions
• X-ray imaging methods that capture spatial heterogeneity at the pore-

scale are currently available; these tools are needed to evaluate how 
dissolution and precipitation might impact reservoir performance 
(injectivity, capacity & integrity) 

• Near-term goal: provide geochemical rules to “the modelers”, engineers 
and stakeholders who are trying to decide if and where CO2 mitigation 
and energy generation technologies are safe & cost effective

• Long-term goal: develop robust methods for scaling, where new 
capabilities at NSLS II should enable this community to advance our 
understanding of how pore-scale processes drive reservoir scale 
phenomena

AEP’s Mountaineer Power Plant (Photo: NY Times)



Thank you!
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