Statistical Challenges Facing Pore-Scale
X-ray Imaging Results

Current capabilities and future experiments to
quantify leakage potential through caprocks
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Took the picture, thinking that the science that I do should become part of the decision making process. Critical that decisions regarding how we transition to a more sustainable life style.


Can we develop rules to evaluate caprock quality?

* How much CO2 could leak through the
Eau Claire caprock formation?

lic = \Well perforations (age, cement, plug...)
g;f;:gi s » Permeability thru fracture networks
AL existing & induced fractures
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Model inputs based on what we’ve got?

» Formation mineralogy
= Brine chemistry
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The real picture is far more complex

Optical image
of thin sections

= Spatial heterogeneity

= Unique mineralogy at fracture
surface

= Potential for preferential flow
paths

How big could we get it wrong?



X-ray microprobe can provide unique spatial information

= Constrain accessible surface area
term (high sensitivity)
= Derive empirical relationships
between pore-space and
geochemical properties
element composition (#XRF) Rl o g
mineralogy (xXRD) ’ ———

Rock thin section

element speciation (uXAS) | Spatial resolution often
= Define maximum achievable ion limited by sample

concentrations thickness



Spatial heterogeneity adds significant complexity

Mt Simon sandstone SEM and BSE images of fracture surface
Sub-core from Muskegon Co. Michigan = q g = 7 e
WMU Core Lab (Dave Barnes) - T

Ll

Of wwo
[

ARLARARAANY

02
|

* Pore space scale (see scale bar)
* Mineralogical & Geochemical
heterogeneity
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~ How do we represent so much spatial heterogeneity?

LXRF: Quantify Fe, Ca, K (Ti, Mn) spatial distribution

Y Distance (mm)

0.4 0.6
X Distance (mm)

» Define pore space
e Constrain accessible surface area
 Quantify Fe, K, Ca content within pore space
and pore surface coatings
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Spatial distribution of accessible minerals
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e Define pore space mineralogy
K, Ca content in primary grains,
which is inaccessible

LXRD - crystalline phase identification
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Phases identified

+— > Silicates

» Calcite, dolomite

» Pyrite (?), hematite
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“IDefine spatial distribution of Fe oxidation state & coordination

Normalized Absorbtance
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Need to fix peak positions based on model compounds (convention of Wilke); also need to check calibration; current calibration shift of -1eV


Dream experiment: What are the actual dissolution rates of
these calcite & dolomite bands during acidified brine flow?
We need:
Ambherstburg formation : : :
carbonate caprock » 3-D Images at multiple time points
8 ?_57; Maintain registry with x-ray beam
» P/T-dependent rates
Flow-thru sample cells
» Spatially resolved rates
Good image segmentation
» Precision trace element conc.
High XRF sensitivity
» Mineralogy imaging tomography
Diffraction & diffuse scattering
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Online/offline in situ synchrotron-based x-ray tomography

Online mode: flow-thru CO2-brine at P/T Offline mode: mini-core closed off and

Jeff's lab at BNL transferred to beamline at P/T
NSLS Beamline X27A & X26A; X2

ISCO

Brine-CO2
@ PIT

Maintain hydrostatic pressure:

Schoonen Lab (Stony Brook) has working stop-cock or BPR

system with PEEK tubing Temperature: radiant or gas

Note: confining pressure not feasible blower heating



X-ray Microprobe beamline (NSLS beamlines X27A, X26A)

X1,Y1,Z Rotation stage () & goniometer (X2,Y2,y,p)
sample y lon chamber Monchromator
[] Sy I T
CCD for Focusing mirrors X-ray beam
. . E= 20 keV
diffraction

Focused: 7x10microns (VxH)

Optical microscope

Pin-diode for
phase contrast //

Solid state Ge detector
snout for fluorescence

X27A: Top view - X,y,z & rotation
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X26A tomo: single slice, phase contrast with pin-diode detector

Single 6um
thick slice

Calibrate x-CMT
w/ XRF CMT

Composite map
Rb (Red) and Sr (Blue) overlay
on pin-diode (Green)

0 100 200 300 400 (pum)



Surface phase coating silica grains?
X26A tomo — Rb, Sr, Fe
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Silica absorbs Fe K«
fluorescence at 7 keV
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Need to register with CT imaging
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 X-ray imaging methods that capture spatial heterogeneity at the pore-
scale are currently available; these tools are needed to evaluate how
dissolution and precipitation might impact reservoir performance
(Injectivity, capacity & integrity)

Conclusions & future directions

« Near-term goal: provide geochemical rules to “the modelers”, engineers
and stakeholders who are trying to decide if and where CO2 mitigation
and energy generation technologies are safe & cost effective

 Long-term goal: develop robust methods for scaling, where new
capabilities at NSLS Il should enable this community to ad#ance our
understanding of how pore-scale processes drive reservoir scale
phenomena




Thank you!
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