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"rbon Dioxide Sequestration

Overview of Geological Storage Options e— o cod oil or gas
1 Deplated ol and gas reservairs ssssaseunssasnnsss |[njgctad CO.
2 Use of CO, in enhanced ol and gas recavery W Storad CO

4 Deep saline formations — (a) offshore (b) onshora
4 Lse of GO, in enhanced coal bed methane recovery




sarbon Dioxide Sequestration

about 6 Gtons (6x10° tons) of CO,

out .8 Gtons ¢ S emissions originate from
2 point sources, where large is defined as local
sion in excess of 0.1 Mton (0.1x10°) ton

jear.

- ®m The US and Canada combined have an estimated
mini CO, sequestration capacity of 3,800
Gtons in deep saline formations.
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=irectiveness in the Long Term is
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B Sequestration Conditions:

= Supercritical CO,
s 31-100 C 2 2 300 350 400
o ~75 bar temperature (K)

= High Temperature (Geothermal Gradients)
= Low initial pH (Mineral Dissolution)
= Divalent Cations form Carbonates
= Ca%t, Mg?*, Fe?*
= Mg Bearing Olivines and Serpentine Minerals
form Magnesite

m Conversion to Carbonate Mineral is Kinetically

ITLIimited




om Fuel Combustion
egrated Gas Combined

C) plant

| g studies suggest that H,S and/or
nstituents commonly found in scCO,
jectate may alter the near field and far field
>0NC S, which can affect both injectivity

~ and long-term storage.

T.F. Xu, J.A. Apps, K. Pruess, H. Yamamoto, Numerical modeling of injection and mineral
trapping Of CO2 with H2S and SO2 in a sandstone formation, Chemical Geology 242(2007) 319-346.
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Key Research Issue

e following

O, Inject

e Fe’
litate
equestration?
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\ Hematite can Convert to Siderite and
Pyrite after ~2 months at 150 °C (SO, + CO, + H,0)

J.L. Palandri, R.J. Rosenbauer, Y.K. Kharaka, Ferric iron in sediments as a novel
Ij_l CO2 mineral trap: CO2-SO2 reaction with hematite, Applied Geochemistry 20(2005) 2038-2048.
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Iron Reduction and
Siderite Formation

2Fedt + S — 2Fe?* + S

CO;% — FeCOq,

Net Reaction

Fe,O, + H,S + 2CO, —
2FeCO, + S + H,O




" itions based on Calculation

1% H,S

HCO,

Fe3*-bearing Mineral
Phase
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| IR beam

' Evanescent wave probes aqueous/solid
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- scCO, generation

m scCO2 injected into
reaction/infrared cell
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perimental Setup

Film or Slurry (
S Inject water

T 2 ‘Inject Na,S,and/or NaHS

Pressurize (1200 psi)

Heat (70 C)

CO, Pressure




Nano Hematite

2 different hematite diameters to
look at size dependence
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" itions based on Calculation

1% H,S

HCO,

Hematite slurry



Hematite conversion to Siderite

82 bar CO, Dissolved
0.82 bar H,S CO,
T=70°C
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SEM of Post Reaction Product

Siderite

i -
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Key Considerations

atite) + 15H* + HS™ = 8Fe?* + SO,
+ 8H,0
tion of Fe3*)

. H,CO, + Fe** = FeCO, + 2H*
~ (generation of siderite)

| 4 é203 hematite) + 15H,S + H,S50, = 8FeS, +
16H,0 (formation of pyrite)



S sulfide concentration

1% H,S

CO 2
L HCO, HS
| H,CO, H,S

Fe3*-bearing Mineral
Phase



Hematite conversion to Pyrite with
higher sulfide concentration

Hematite - Control

py — pyrite
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+ 8H,0
duction of Fe3*)

FeCO, + 2H"
(generation of siderite)






iry of Model System

of Iron oxyhydroxides and oxides can
0 siderite under ScCO, conditions

Jeg n IS a function of particle
orphology ngh Urface to volume ratio convert
|l. Nano-hematite (20 nm) shows more
qversion than larger goethite particles (micron

centration of reductant important (I.e., HS").
Oxides may convert to stable sulfide phases instead
of carbonate at high concentrations of sulfide.




out Real Systems?

smatite system

Sandstone
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Moenkopi Sand Stone, Lower to Middle Triassic, sample collected in
Arizona by Alden Carpenter

2
used <180um fraction, 9.98 m /g

XRF: 67.2% SiO2, 20.6% Al203. 5.1% Fe203. 3.7% K20

400

Experimental pattern: Date: 961212 ID: FFFFFF (moenkopi_a.raw)
[99-200-4084] O2 Si Silicon oxide (Quarkz low)
[99-100-6326] (K.986 Na.014) (al1.03 Si2.97) 08 (Microcline)

350
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Hlow-Through
—Xperiments

s-*"eF mixing Tee HPLC
pump

i B O
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Waterbath, 75°C

back Pressure regulator (1100
psi)
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or FLOW-THROUGH experiments

Unreacted Moenkopi Sandstone
Flow Through with scCO,
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Batch Exgeniment gy Experiment
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Moenkopi Sandstone Batch Experiment with scCO,, Sulfide, and Sulfite 295K
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Conclusions

er near-field conditions addition of

2S + H20 or SO + H20 has no

the reactivity of the iron bearing

D conversion of hematite in
dstone.

In CO2-saturatec aqueous fluid, the
addition of sulfide + sulfite leads to the
formation of siderite.

COz-saturated aqueous fluid, the
addition of sulfide alone leads to the
formation of pyrite but not siderite.




Implications

e reactivity expected of scCO:
gas and water as co-injectate

y react if S-bearing gas is co-injected.
)Sity and permeability may change as a
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~uture Direction

e of conversion on Temperature
al pressure.

e,0;(hematite) + 2c:o2 + SO, + H,0 =
b 2FeCO; + H,SO,









Unreacted Moenkopi Sandstone 295K
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Normalized intensity [%]
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