Full NLO corrections for DIS structure functions in the dipole factorization formalism

Full NLO corrections for DIS structure functions in
the dipole factorization formalism

Guillaume Beuf

ECT*, Trento

Saturation: Recent Developments, New ldeas and Measurements
RBRC workshop, Brookhaven Nat. Lab., 26-28 april 2017



Full NLO corrections for DIS structure functions in the dipole factorization formalism

Outline

o Introduction: dipole factorization for DIS at low xg;

@ One-loop correction to the v, — qg light-front wave-functions:
Direct calculation

G.B., PRD94 (2016)

@ DIS at NLO in the dipole factorization :
Detailed calculation for v case
Cancellation of the UV divergences between the qg and ggg terms
Results for v} case

G.B., in preparation
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Introduction

At low xg;, many DIS observables can be expressed within dipole
factorization, including gluon saturation — rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS
structure functions in the dipole factorization at LO+LL with rcBK
Albacete et al., PRD80 (2009); EPJC71 (2011)

Kuokkanen et al., NPA875 (2012);

Lappi, Mantysaari, PRD88 (2013)

= The fitted dipole amplitude can then be used for pp, pA, AA, as well
as other DIS observables.
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Introduction

At low xg;, many DIS observables can be expressed within dipole
factorization, including gluon saturation — rich phenomenology.

In particular: Dipole amplitude obtained from fits of HERA data for DIS
structure functions in the dipole factorization at LO+LL with rcBK
Albacete et al., PRD80 (2009); EPJC71 (2011)

Kuokkanen et al., NPA875 (2012);

Lappi, Mantysaari, PRD88 (2013)

= The fitted dipole amplitude can then be used for pp, pA, AA, as well
as other DIS observables.

In the last 10 years, many theoretical (including numerical) progresses
towards NLO/NLL accuracy for gluon saturation/CGC.

Obviously, DIS structure functions at NLO in the dipole factorization are
required to push the fits beyond LO+LL accuracy.
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DIS at NLO: previous results

2 independent calculations had been performed earlier for NLO
corrections to photon impact factor and/or DIS cross-section:

@ Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
Using covariant perturbation theory. Results provided as

o Current correlator in position space
o Impact factor for k; factorization — Good for BFKL phenomenology

@ G.B., PRDS85 (2012)
Using light-front perturbation theory. Results provided as

o DIS structure functions in dipole factorization
— Good for gluon saturation phenomenology
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Using covariant perturbation theory. Results provided as
o Current correlator in position space
o Impact factor for k; factorization — Good for BFKL phenomenology

@ G.B., PRDS85 (2012)
Using light-front perturbation theory. Results provided as
o DIS structure functions in dipole factorization
— Good for gluon saturation phenomenology

However, in both papers only the qgg contribution was calculated
explicitly, whereas NLO corrections to the gg contribution were guessed.
Methods used for that:

In Balitsky, Chirilli, PRD83 (2011):

Matching with earlier vacuum results
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DIS at NLO: previous results

2 independent calculations had been performed earlier for NLO
corrections to photon impact factor and/or DIS cross-section:

@ Balitsky, Chirilli, PRD83 (2011); PRD87 (2013)
Using covariant perturbation theory. Results provided as

o Current correlator in position space
o Impact factor for k; factorization — Good for BFKL phenomenology

@ G.B., PRDS85 (2012)
Using light-front perturbation theory. Results provided as
o DIS structure functions in dipole factorization
— Good for gluon saturation phenomenology

However, in both papers only the qgg contribution was calculated
explicitly, whereas NLO corrections to the gg contribution were guessed.
Methods used for that:

In G.B., PRD85 (2012):

Unitary argument — wrong: missed photon finite WF renormalization
= NLO gg terms needs to be calculated separately in LFPT
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Kinematics for Deep Inelastic Scattering (DIS)

proton

do_epHeJrX Qlem

)2
dxg; d?Q  Txg; Q2 [(l Yty 2 ) o (xe; @)+ (1=y)o/(xs); @)

Photon virtuality: Q° = —q2 >0
Bjorken x variable: xg; = 52— ; €00,1]

Inelasticity: y = (gif)z =2P4 ¢ o, 1] xgiys= Q>
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Kinematics for Deep Inelastic Scattering (DIS)

proton

do.ep—>e+X

2
— Qem _ L Y ) 2 _ v . 2
dXBj d2Q - 7TXBJ'Q2 [(1 y+ 2 ) UT(XBij )+(1 y)JL(XijQ )

Other equivalent parametrization: structure functions F;

27)2 e
% Fr.1(xgj, @%)

Fr+ F. and 2XBj F=Fr

o7 . (xg, Q%)

F>
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Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave
background, in light-front perturbation theory:

Y /i 2ro (ks +ki —q"

) ~ 2
2q* ‘ww\aqocﬁ Re [1 - 801]

qog1 F. states
/i 216k +ki +ki —q™)
2gt

+ 2N.Cr

qog182 F. states

"Re[i-s)] +

X ’l/)'Y)\_MIOCTlgz

nyk*}f . color-stripped light-front wavefunctions of the incoming photon
for the Fock-state decomposition in mixed-space (k*,x)
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Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave
background, in light-front perturbation theory:

— + gt gt
oo Y 216(ky +ki —q

~ 2
g+ ) ‘%ﬁqoq‘l Re [l — So]

qog1 F. states

P

+ 2NCr >

qoq182 F. states

2r8(ky +ki +ky —q™)
2g+t

X w’m—ﬂloq'lgz

"Re[-s)] ¢

1
Dipole operator: So1 = ﬁTr (UF(xo) U,T_-(xl)>

1

"Tripole” operator: Séi)z =V
c “F

Tr (thF(xo) taUE(X1)) Ua(x2)ba
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Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave
background, in light-front perturbation theory:

— ot ot
T o, Z 2nd(ky +ki —q

) ~ 2
2q+ ‘ww—moqﬁ Re [1 - 801]

qog1 F. states
/i/ 2r8(kf +ki +ky —q ™)
2gt

+ 2Nc CF

qog182 F. states

’ Re[1-s@| +-

1/"n —qoq182

ki o ki, %o
® ® kL. x® ®
qt, Q*
k.ox K x

X
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Calculation of the y1; — qg LF wave-functions at NLO

@ Calculation done in Light-front perturbation theory for QCD+QED

o Cut-off k.

min

introduced to regulate the small k™ divergences

= associated with low-x leading logs to be resummed with
BK/JIMWLK evolution at the end

@ UV divergences from various tensor transverse integrals, but no UV
renormalization at this order.

= UV divergences (and finite regularization artifacts) have to cancel
at cross-section level

= Use (Conventional) Dimensional Regularization, and pay
attention to rational terms in (D —4)/(D — 4)
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Diagrams for the v+ — gg LF wave-function only

'
0 0 0
%999999) Vi@ A
2
T T 2
VoA 666666%
1 1
I
, EDy EDo N ) EDp EDio N
vt = —oo xt =0 Tt = —00 rt =0
Diagram A’ Diagram B’
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0 0 0
Vg A %
- + 2
&2
y VoA
1 1
0
= —o0 EDy4 EDso ot =0 A EDp EDso =0

Diagram 1’ Diagram 2’
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Diagrams for the v+ — gg LF wave-function only

0
%@@%999} Vg A
T T 2
VoA 666666%
1 1
I
, EDy EDo N ) EDp EDio N
vt = —oo xt =0 Tt = —00 rt =0
Diagram A’ Diagram B’
/
0 0 0
Vg A %
- + 2
&2
y VoA
1 1
0
N ED4 EDro N N EDp EDro N
T — —o0 rt =0 T — —00 xt =0
Diagram 1’ Diagram 2’

All four vanish due to Lorentz symmetry!
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Diagrams for v and v, LFWFs: 3 steps graphs

EDwo EDa

ED;y

o = —o0 EDpo s e EDy EDo ‘o
Diagram A Diagram 1
0 % 0
P 2

- .

vh OD% Vi
1 1

i 1 1
. EDio EDgp EDo EDy EDp EDpo

Diagram B
(=}

t =0

Diagram 2

rt =0



Full NLO corrections for DIS structure functions in the dipole factorization formalism

One-loop correction to the ~y T,L — 499 LF wave-functions

Diagrams for v+ and vy, LFWFs: 2 steps graph

EDy EDro

Diagram 3

@ In the 7 case: vanishes due to Lorentz symmetry

@ In the 7, case: non-zero, and cancels the unphysical power-like small
k™ divergence of the other vertex correction graphs.
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Results for NLO v7; — qg LFWFs in momentum space

&7 CF ree
wW?,L—Mmfh = {1“'( ;W ) VTyL] ¢Py§i—>qozh +O(eo¢§)

D
Ky Dy (@) a
yL o — 9 [Iog k*ki>+‘3‘] {F(22) (47?7> 72|og< PQ )}
) 2
2

log (;)} — = 434 0(D—4)

VT = VL+2[|og< ki?l;)‘Lﬂ ("2 )log( = )+O(D 4)

4+
Notations: Q° = kqf)z Q?,

and relative transverse momentum: P = ko—— q=—k; + q+ q

Remark: results consistent with the ones of Boussarie, Grabovsky,
Szymanowski and Wallon, JHEP11(2016)149
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Results for NLO 1 ; — qg LFWFs in mixed space

@ In mixed space: NLO corrections = rescaling of the LO v1 ; — qg
LFWFs by a factor independent of the photon polarization and
virtuality !

@ Leftover logarithmic UV and low k* divergences to be dealt with at
cross-section level.
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One-loop correction to the ~y T,L — 499 LF wave-functions

Results for NLO 1 ; — qg LFWFs in mixed space

o as Cr ¥ T tree
.= [1—&-() V”] 5 qom +O(eaz)

Vi = V4 0(D-4)
= 2 [Iog( k"‘+'"k+> Z] [2_ —\Il(1)+log(7r,u2x012)

+1 [Iog( )]2——+ 5+140(D-4)

@ In mixed space: NLO corrections = rescaling of the LO y1; — qg
LFWFs by a factor independent of the photon polarization and
virtuality !

o (D—4)/(D — 4) rational term 1/2: from ~* algebra in D
dimensions = UV regularization scheme dependent!
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DIS at NLO in the dipole factorization: combining the pieces

From LFWFs to DIS cross-section

ki xo
s kL %o 6
/) ) ]AN . o
¢, Q
Kox xi

Jz;’t_,a now known at NLO accuracy in Dim Reg.

= Need to be combined with the ggg contribution in the dipole
factorization formula at NLO

= 4z qag IS required also in Dim Reg, in order to cancel UV

divergences as well as scheme dependent artifacts.

Only the derivation of o will be discussed in detail in the following for
simplicity.
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qg contribution to o] at NLO in dim. reg.

— D _
Bt = —eot e 82085 (:2) 57 g, (101Q) w05 w00
~—  2m8(ki +k—q™) oo 2
O"Ly‘ ~ = 2NC Z 02 +1 w,tn_)qoq—l Re[1—301]
a9 qog1 F. states q
as CF 5L 2 2
1+ - 1% + O(em %)
a'[‘ = 4Ncaem Zef/dD x dD °x /dk* dk+6(k++k+ q")
qq

D_
2

9% (K | o [K 2("‘01'0)}

x [L4 (225%) V*| Rell - Soul + O(em 02)
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Longitudinal photon case

Tree-level diagrams for v, — qgg LFWFs

2 diagrams contribute to v, — qgg (and 4 to vr — qgg):

0

)

Diagram (a) Diagram (b)

— Standard calculation in momentum space using LFPT rules, but to be
done in dimensional regularization

Then: Fourier transform to mixed space
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v. — qqg LFWF in mixed space

Result:

T Tree _ j* 2Q
Vi —aqme — CEFE e g

_ , £ —2
X {kf G (0)y* [(2k0++k2+)5jm + % [“Yja’Ym]} vg(l) ™ (Xo+2;17X20; Q(a)’c(a))
+ == + + +\ $jm szr J Am m . A2
—ky U(0)y" | (2k{" +k37 )™ — Z [/, ™| v6 (1) I™(x0:1+25 X215 Q(py, C(ty)

with the notations:

6(2) — ki (gt=k{) Q2 and Q k*(q*—ko*) Q2
a

(a%)? (a%)
/< q* k' kT
Cor = ey md o) = Flpney

And parent dipole vectors defined as:

kI x, + ki xm
Xn4tmp = Xppp+m=|—""737 5 | — Xp
ki +kih
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Longitudinal photon case

qGg contribution to o] at NLO in dim. reg.

N 2no(ki ki —q" 3
0/ lqag = 2N Cr Z % ‘ YL qod182 Re {1 - S(()lé}

qog182 F. states

+o0
= 4N, Cem Zez/odko /dk+ /k dk; S(kg +ki+k—g")
f

x2asCF/dD_2xo/dD_2x1 /dD_2xz Re {1 75(()?2] (‘:’?)25

{067 (25 kg i)+ 252 (k;f] (@ |
)R [2k (K )+ B2 ()] [z (o) |

kS I 20 K+ 2k0+<k1++k;> ~ (D-4)(k )]

<Re(Z7 (@) 27 (5) | + Ofcram o)
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Longitudinal photon case

UV divergences of the ggg contribution to o

UV divergences :
@ At xp — X for |(a)|? contribution
e At x, — x; for |(b)|? contribution
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Longitudinal photon case

UV divergences of the ggg contribution to o

UV divergences :
@ At xp — X for |(a)|? contribution
e At x, — x; for |(b)|? contribution

Traditional method to deal with these UV divergences:

© Make the subtraction {1 78831;)2] — {1 - Ség} - {1 - 801} in o] |qag

@ Add the corresponding term to ¢/|q3

It works for the divergences, but it is far from optimal in the present case!
= Let us present an improvement of that method.
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DIS at NLO in the dipole factorization: combining the pieces

Longitudinal photon case

Properties of the Fourier integral

dP—2K K™ er‘K«r’ e

—=2 _D D—2
(i) =0t [t [ ey
Introducing Schwinger variables:
_D
Im(r, r/;az,C) r'" (r’2)1 : 5 (2m)27P (u?)

+oo o 72 >

r
x/ dool=2 79 e~ iz F(g—l, 7
0 g

N
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DIS at NLO in the dipole factorization: combining the pieces

Longitudinal photon case

Properties of the Fourier integral

iP-r

K.y
K™ erK«r e

m 1. A2 ): 2y2-2 d°—p dP—2K
7 (r,r,Q €)= (p?) 2 /(27T)D—2 /(27f)"‘2 P2+ Q| {k21c|P24 Q| }
Introducing Schwinger variables:

. 1-2

Im(r,r/;Qz,C) = ¢7 (r’2) ’ 5
+oo
x/ do ol=% 6’062 e*% F(g—l,%)
0

For D = 4:
2,c) i (l) KO(G\/r2+Cr'2)

VA (r, r'; Q = T

N

= @y
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Properties of the Fourier integral

m /. A2 _ 2\2_D 4P—2p dP—2Kk K™ er‘K«r’ e
z (’v"Q ,c) = (1) / @m)P-2 / @m)P=* P24 Q| { k21 |P24 Q| }
Introducing Schwinger variables:
_ -2 _D
(@) = ¢ ()T en P ()

e 1-0 Q-7 D 2¢
X dool=7 e e m [ (5—1 ’—)
0

) 4o

NI~

N

Im(r,r’;bz,c> = w ('rl,—:) KO(G\/errCr’z)

UV behavior: For |r| —0: zm (r, r’;52,C) ~ I (r, r/;éz)

I
*\
3
—
ﬂ\
N
~—
-
I
|
:‘ -
2
<
—
—
[Slle)
|
—
SN—
—
~
o
=1l
™
=]
~—

n, (r, r’;52)
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Longitudinal photon case

Building the UV subtraction terms

Next attempt to deal with the UV divergences : make the subtraction

{‘I’" ((3)) ‘2 Re [1 — Sc()i)z} — ’IZ’V (x017xz0;§(23)> ‘2 Re[l — 801} }

Cancels indeed the UV divergence at xo — xg, but produces an IR
divergence at |xp9| — 400, absent in the original term!
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Longitudinal photon case

Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as

{2 [ o)

—Re (L’?\’; (X01, X20; 6?‘9)) iy (x017 X21; 6(1))) ] Re [1 — 801} }

This difference leads to a UV and IR finite integral in x;.
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Building the UV subtraction terms

Final idea: subtract the IR divergence from the UV subtraction term, as

{2 [ o)

—Re (ILT\’; (X01, X20; 6?‘9)) iy (x017 X21; 6(1))) ] Re [1 — 801} }

This difference leads to a UV and IR finite integral in x;.
= The D — 4 limit is now safe to take:

- {(271T)4 x1§0 {Ko(Qsz)r Re{l —Séﬂ}
_ﬁ [zgz : (222 - igi) } [Ko (6?,;) |xo1|)rRe{1 — 801} }

Q2
(™)

_qqg form. time

QX2 = s | K ki + I+ k| =

~* life time
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DIS at NLO in the dipole factorization: combining the pieces
Longitudinal photon case

UV-subtracted ggg contribution to o]

Subtracting both UV divergences this way:

Yoo v _ 7 v)_
0/ lqag UL‘UV,\(a)P UL‘UV,\(b)P = 0/lgoe T/ lgg
where
—+o0
_ 2 + dks + .t
0/ lgmg = 4Ncaem Zfef/dko /dk /+ 22 S(ky +ki +ki —q™)
K
2 (ki)
OzsCF 4Q k d2x0 dle d2x2
T

Losuints [izz-(%z—%)} (st0m0) Re(1-52) = (e )
+ (k) ) (Ko(oxou)fRe(l—Séﬁ) }
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UV-subtracted ggg contribution to o]

Subtracting both UV divergences this way:

Y. T _ 7 v)_
0/ lqag UL‘UV,\(a)P UL‘UV,\(b)P = 0/lgoe T/ lgg
where
—+o0
_ 2 + dks + .t
0llgsg = ANecem Zfef/dko /dk /+ 22 4( ko +k+ky —q")
K
2 (ki)
OzsCF 4Q k d2x0 dle d2x2
T

Losuints [izz-(%z—%)} (st0m0) Re(1-52) = (e )
+ (k) ) (K0<Qx012))2Re(1—S§ﬁ) }

20

And 0] |34 integrand obtained by exchanging the quark and
antiquark: (kg,xo0) <> (ki,x1)
= 0/lg—g = 0/lq—e
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Longitudinal photon case

UV-subtracted ggg contribution to o]

Hence:

o/ lgae — ol lov,@)p — llovimr = 20]l4-g

Changing variable to momentum fractions:

Yy _ C d?x d X d X
UL|qag = A4Nc aem Zf ef/dZ4Q2 *(1-2)? as £ ﬁerg/ . 1 2

‘min

{[1*(15_5)2] [ZE (Xizg %)} [(Ko(QXolz))QRe(l_Séi%) a (X2 - XO):|
st o neo-2)

with now:

XGio = (1=8)z(1—2)xg; + £(1—€) x5 + E2(1—2)x5
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Longitudinal photon case

Combining the UV terms with the gg contribution to o

In dim. reg., the UV subtraction terms can be written as

ol luv, i) + ol luv,b)e

—4Naem2ef/d“ 4 /dk* dk+5k++k+ q")

60 ] o]

=) [ ov,i(a)2 T VUV I( b)|2] Re[l — So1]
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Longitudinal photon case

Combining the UV terms with the gg contribution to o

In dim. reg., the UV subtraction terms can be written as

ol luv, i) + ol luv,b)e

—4Naem2ef/d“ 4 /dk* dk+5k++k+ q")

(405 (ki kit )2 {ﬁF_Q [KD 2(\x01IQ>]

(aSCF> [ bv.|(a |2+9LL/V,\(b)|2] Re [l — Sp1]
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Combining the UV terms with the gg contribution to o

In dim. reg., the UV subtraction terms can be written as

ol luv, i) + ol luv,b)e

—4Naem2ef/d“ 4 /dk* dk+5k++k+ q")

60 ] o]

=) [ uv,|(a)? +Vuv \(b) 2] Re[l — So1]

With:

~ D 2_D k+. 3 (D—4)
1 - - 2 min
Yovier =T ( 2 2) (mi*x1) ["’g( k' ) i s
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Longitudinal photon case

Combining the UV terms with the gg contribution to o

Expanding around D = 4:

]’}lI:/V,|(a)|2 + ijv,\(b)P = =2 |:(2_152,) — \U(].) + |Og (71' X012 luz):|

K+
X [Iog (V’%T) + i} —% + O(D-4)
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Longitudinal photon case

Combining the UV terms with the gg contribution to o

Expanding around D = 4:

]’}lI:/V,|(a)|2 + ib\/,‘(b)lz = -2 |:(2_152,) — \U(].) + |Og (71' X012 'u2):|

K+
X [Iog (V’%T) + i} —% + O(D-4)

But in the g contribution to ¢/:

3 Kkt
yEo= 2 [(215) — V(1) + log (7rx012 /ﬂ)] [Iog( T}lﬁ) + i}
K\1? 2
+1 |log ()]~ % + 3+1+ 0(D-4)

= Cancelation of:
o the UV divergence
e the kT

., dependence
@ the +1/2 rational term : strong hint of UV regularization scheme

independence
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Longitudinal photon case

Combining the UV terms with the gg contribution to o

Total contribution for the dipole-like terms:

/ laipole = 0] lqg + o luv, )2 + ] luv b
= AN, Qtem Zef/dm Ox, /dko /dkl+ S(ky +ki—q )(‘;9;

x (ki kit)? [K0<|x01|§)} [1+(“sTcF) 17,5,3%_} Re[l — Soi]

With:

WL _ L WL L
Vreg = V + VUV |(a)|2 + VUV,‘(b) 2

_1|0 kO _124_5
=2 8 \kF 6 2
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Combining the UV terms with the gg contribution to o

Total contribution for the dipole-like terms:

0] laipote = 0/ lqg + ] |luv @212 + ] luv,|v)2

= 4N, aemZef/dz4Q2 2(12)2 /dxo/dx1 Re [l — So
X[Ko(ox/z(li—z)\xm)} {1+(°‘;CF) [ [Iog(l_z>r—%2+

Nl

)

Full NLO result (fixed order) for ¢}

ol o lgg + 0/ lqag
v ¥ Y.
o/ ldipole + 0] lg—g + 0/ lg—¢

= O’Z‘dipole +2 GZ|q—>g
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Transverse photon case: result for o at NLO

@ Cancellation of UV divergence follow the same pattern in the v7 case
@ Results can be expressed in the same form:

or = 01leg +07leae

o ldipole + 07 lgog + 0T ]G

= U;Y"dipole + 20';'|q—>g

where:

1
2 2
U:Hdipole = 4I\IcOéem Ze?/dZZ(l—Z)/%/%RG[I—SM]
£ 0

x[22+(1-2)?] @ [K1<Q\/m|x01|>r
e () [3 s ()] - £+ }

Nlo
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Transverse photon case: result for o at NLO

Main complication: diagrammatic calculations lead to a cumbersome
expression for the contributions to 0/|45¢. see: G.B., PRD85 (2012)

However, after lengthy algebraic manipulations, the results can be
simplified into:

01lgsg = AN Qe Zfef/dzz(l z) o asCe /(+d§/d"° dxl dxz

Jivnan L oo (o]
x [02 (K1 (QXo12) )2Re(1_33§;) - (x2 o xo)}
+¢ { (22 + (1-2)%] % L og(1-z)(1—g) P20 X2) Z(l_f)}

2 2
X20%21 X20X012 Xo12

% Q% (K1 (Qr2) ) Re(lsé?z)}
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Final step: BK/JIMWLK resummation

2 A2
© Assign k. to the scale set by the target: k7. = 2XS°P_ = );‘Z’—QQS q"
@ Choose a factorization scale k< kg, ki, corresponding to a range

2
for the high-energy evolution Yf+ = log (:T?) = log ( 0 Q ki )

xgj Q5 q*
@ In the LO term in the observable, make the replacement
Y+

(Sor)o = (So1)yy _/o "yt <3Y+<501>Y+>

with both terms calculated with the same evolution equation
@ Combine the second term with the NLO correction to cancel its k.
dependence and the associated large logs.
= Works straightforwardly in the case of
@ the naive LL BK equation

@ the kinematically improved LL BK equation as implemented in
G.B., PRD89 (2014)

Should also work with the other implementation (lancu et al., PLB744
(2015)), but might require a bit more work.
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Conclusion

© Direct calculation of y7; — q§ LFWFs at one-gluon-loop order,
both in momentum and in mixed space

@ Full NLO corrections to F; and F7 from the combination of the qg
and ggg contributions, with improved method to cancel UV
divergences

Phenomenology outlook : All ingredients soon available for fits to HERA
data at NLO+LL accuracy, and hopefully NLO+NLL
accuracy, in the dipole factorization, including gluon
saturation.

Theory outlook : e Application of the NLO vy7; — qg(g) LFWFs to
calculate other DIS observables at NLO?

@ Extension to the case of massive quarks?

@ Comparison to other calculations of photon impact
factor at NLO 7
Bartels et al.(2001-2004); Balitsky, Chirilli (2011-2013)
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