Linear and non-linear small-x evolution in $p Q C D$

Simon Caron-Huot

(McGill University)

Based on: I50I. 03754 I604.074I7 (w/ Matti Herranen)

RBRC saturation workshop, Brookhaven, April. 27 ${ }^{\text {th }} 2017$

Motivations

I'll be discussing higher-order perturbative corrections.
I. BFKL convergence is slow:
attributed to DGLAP physics -> resum.
theoretically, this fits one data point.
\Rightarrow how well does it predict 3-loop?

Further Motivations

2. Multi-loops are standard in many QCD contexts
($\beta: 4(5)$ loops; DGLAP: 3 loops; Higgs σ : 3loops,...)
$\mathrm{Q}_{s}{ }^{2}$ in saturation physics never that big...
3. Purely theoretical:
-partonic amplitudes in Regge limit: unique insight into scattering at high loops
-generally interesting limit (pomeron \rightarrow graviton in AdS CFT,...)
-new qualitative features @NNLL(non-planar pomeron loop...)

Outline

I. New duality between rapidity \& soft evolution [cf Duff Neill's talk!]
2. Rapidity-Soft duality as a computation tool -What is needed at NLO
-Why do they match even in QCD?
3. Outline of NNLO (so far, N=4 SYM)
-test I: integrability
-test 2: collinear limits\& DGLAP

NLO BFKL\&BK ('98,'07) were hard to compute

A different formulation would be nice

- Consider amplitude (like others in this workshop):

$$
\sigma_{\text {DIS }} \propto \operatorname{Im} A\left(\gamma^{*} p \rightarrow \gamma^{*} p\right)
$$

- Dipole picture: $\rightarrow \int d^{2} x d^{2} y \rho(x-y)\left\langle U_{x y}\right\rangle_{\text {target }}$

Small dipole: transparent
$(U \rightarrow 1)$ Large dipole: opaque
($U \rightarrow 0$)

- General (semi-exclusive) jet observables can be phrased analogously

$$
\sigma=\sum_{n} \int d \operatorname{Lips}_{n}\left(\left\{p_{i}\right\}\right) u\left(\left\{\theta_{i}\right\},\left\{E_{i}\right\}\right)\left|A_{n}\right|^{2}
$$

measurement ' u ' encodes all the experimental cuts

Forward scattering \Leftrightarrow jet observables

Target \mid Measurement
 Transparent Allowed region
 Opaque
 Veto region
 ?

Non-global logs

Q: Cross-section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X}$, with ' X ' energy smaller than E_0 outside some region R

- Archetype for some actually interesting questions ('how much energy inside a fixed cone',...)
- Suppressed by large soft* logs

$$
\exp \left(-\# \alpha_{s} \log \left(Q / E_{\text {cut }}\right)\right.
$$

[Salam\&Dasupta "0।

- angles not 'globally integrated'
- Difficulty: need to keep track of all radiation in allowed region! [color\&angle]

$$
*^{\prime} \text { soft' }=\mathrm{GeV}<E_{\text {cut }} \ll \mathrm{TeV}
$$

In forward scattering we also keep all radiation

More and more dipoles become saturated (opaque) at high rapidity

With increased energy, near-boundary jets less likely

veto region 'opaque': effectively grows

Rapidity evolution (small \times amplitude)

Soft evolution

(small E cross-section)

Transparent

Opaque
Rapidity Y Soft veto
smaller dipoles effective veto
saturate region grows

- Both controlled by soft gluons
- Care not about energies, but about color
- Promote measurement functions to matrices

$$
u(\theta, E) \rightarrow U_{j}^{i}(\theta)
$$

(can be viewed as Wilson lines which will source softer radiation)

- Quantitative equivalence:

BK: $\quad \frac{d}{d \eta} U_{12}=\frac{\lambda}{8 \pi^{2}} \int \frac{d^{2} z_{0}}{\pi} \frac{z_{12}^{2}}{z_{10} z_{02}}\left(U_{10} U_{02}-U_{12}\right) \quad \begin{gathered}\text { Rapidity } \\ \text { evolution }\end{gathered}$
BMS: $E \frac{d}{d E} U_{12}=\frac{\lambda}{8 \pi^{2}} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{12}}{\alpha_{10} \alpha_{02}}\left(U_{10} U_{02}-U_{12}\right) \begin{gathered}\text { Soft } \\ \text { evolution }\end{gathered}$

- Conformal (stereographic) transformation:

$$
\begin{gathered}
\alpha_{i j} \equiv \frac{1-\cos \theta_{i j}}{2} \rightarrow z_{i j}^{2} \equiv\left(z_{i}-z_{j}\right)^{2}, \quad \frac{d \Omega}{4 \pi} \rightarrow \frac{d^{2} z}{\pi} \\
\text { U/II. }
\end{gathered}
$$

[Weigert '03;

Outline

I. New duality between rapidity \& soft evolution
2. Rapidity-Soft duality as a computation tool
-What is needed at NLO
-Why does it work even in QCD?
3. Outline of NNLO (so far, N=4 SYM)
-test I: integrability
-test 2: collinear limits\& DGLAP

Computing non-global logs

- Soft gluon amplitude is universal:

$$
\lim _{p_{0} \rightarrow 0} M_{n+1}=\sum_{i} \frac{\epsilon \cdot p_{i}}{p_{0} \cdot p_{i}} g T_{i}^{a} \times M_{n}
$$

- For a parent dipole:

$$
\left|M_{3}\right|^{2} \simeq \frac{s_{12}}{s_{10} s_{02}}\left|M_{2}\right|^{2}
$$

- Energy logs from usual IR divergent phase space:

$$
\int d \operatorname{Lips}\left(p_{0}\right)\left|M_{3}\right|^{2} \rightarrow\left|M_{2}\right|^{2} \int_{\int_{E_{0}}^{Q} \frac{d p_{0}}{p_{0}}}^{\sim} \int \frac{\log \left(Q / E_{\mathrm{cut}}\right)}{4 \pi} \frac{d \Omega}{\alpha_{10} \alpha_{02}}
$$

- Radiated gluon will induce softer radiation at later steps: dress with a Wilson line

- Similar to textbook computation of IR divergences, except angular integral 'not global'!

$$
E \frac{d}{d E} U_{12}=\frac{\lambda}{8 \pi^{2}} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{12}}{\alpha_{10} \alpha_{02}}\left(U_{10} U_{02}-U_{12}\right)
$$

- Real\& virtual related by KLN [cancel for $\mathrm{U}=\mathrm{l}$]

NLO:

[Catani\&Grazzini '99]
Square of tree-level soft current relatively simple:

$$
\begin{aligned}
|\mathcal{S}|^{2}= & \frac{s_{12}}{s_{10} s_{00^{\prime}} s_{0^{\prime} 2}}\left[1+\frac{s_{12} s_{00^{\prime}}+s_{10} s_{0^{\prime} 2}-s_{10^{\prime}} s_{20}}{2\left(s_{10}+s_{10^{\prime}}\right)\left(s_{02}+s_{0^{\prime} 2}\right)}\right] \mathbf{N}=\mathbf{N}=\mathbf{S Y M} \\
& +\left(n_{F}-4\right) \frac{s_{12}}{s_{00^{\prime}}\left(s_{10}+s_{10^{\prime}}\right)\left(s_{20}+s_{20^{\prime}}\right)} \\
& +\left(2+n_{s}-2 n_{F}\right) \frac{\left(s_{10} s_{20^{\prime}}-s_{10^{\prime}} s_{20^{\prime}}\right)^{2}}{2 s_{00^{\prime}}^{2}\left(s_{10}+s_{10^{\prime}}\right)^{2}\left(s_{20}+s_{20^{\prime}}\right)^{2}} \text { gauge thy }
\end{aligned}
$$

- Crucial: two soft gluons not independent

$$
|\mathcal{S}|^{2}=\frac{s_{12}}{s_{10} s_{00^{\prime}} s_{0^{\prime} 2}}\left[1+\frac{s_{12} s_{00^{\prime}}+s_{10} s_{0^{\prime} 2}-s_{10^{\prime}} s_{20}}{\left.2\left(s_{10}+s_{10}\right)\right)\left(s_{02}+s_{0^{\prime} 2}\right)}\right]
$$

- Amplitude depends on ratio of soft gluon energies
- NLO is basically the integral over that ratio

Pull out angular integrals:

$$
E \frac{d}{d E} U_{12} \supset \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{\left[100^{\prime} 2\right]} U_{10} U_{00^{\prime}} U_{0^{\prime} 2}
$$

Integrate over relative energies:

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} \tau d \tau\left[\left|\mathcal{S}\left(\tau \beta_{0}, \beta_{0^{\prime}}\right)\right|^{2}\right.
$$

Pull out angular integrals:

$$
E \frac{d}{d E} U_{12} \supset \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{\left[100^{\prime} 2\right]} U_{10} U_{00^{\prime}} U_{0^{\prime} 2}
$$

Integrate over relative energies:

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} \tau d \tau\left[\left\lvert\, \mathcal{S}\left(\tau \beta_{0},\left.\beta_{0^{\prime}}\right|^{2} \frac{-\left.\right|_{\tau \rightarrow 0} \theta(\tau<1)-\left.\right|_{\tau \rightarrow \infty} \theta(\tau>1)}{\uparrow}\right]\right.\right.
$$

Subtract iterations of LO

Pull out angular integrals:

$$
E \frac{d}{d E} U_{12} \supset \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{\left[100^{\prime} 2\right]} U_{10} U_{00^{\prime}} U_{0^{\prime} 2}
$$

Integrate over relative energies:

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} \tau d \tau\left[\begin{array}{l}
\left|\mathcal{S}\left(\tau \beta_{0}, \beta_{0^{\prime}}\right)\right|^{2} \\
-\left.\right|_{\tau \rightarrow 0} \theta\left(Q_{\left[1 \tau 00^{\prime}\right]}^{2}<Q_{\left[10^{\prime} 2\right]}^{2}\right) \\
-\left.\right|_{\tau \rightarrow \infty} \theta\left(Q_{\left[00^{\prime} 2\right]}^{2}<Q_{1 \tau 02]}^{2}\right)
\end{array}\right]
$$

Best: order w/Lorentz-invariant trans. mom $Q_{[i 0 j]}^{2} \equiv \frac{s_{i 0} s_{0 j}}{s_{i j}}$

- That's basically it! NLO (planar) evolution:

$$
\begin{gathered}
K^{(2)} U_{12}=\int_{\beta_{0}, \beta_{0^{\prime}}} \frac{\alpha_{12}}{\alpha_{10} \alpha_{00^{\prime}} \alpha_{0^{\prime} 2}} K_{\left[100^{\prime} 2\right]}^{(2)}\left(U_{10} U_{02}+U_{10^{\prime}} U_{0^{\prime} 2}-2 U_{10} U_{00^{\prime}} U_{0^{\prime} 2}\right)+\gamma_{K}^{(2)} K^{(1)} U_{12} \\
K_{\left[100^{\prime} 2\right]}^{(2)}=2 \log \frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10^{\prime}} \alpha_{02}}+\left(1+\frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10} \alpha_{0^{\prime} 2}-\alpha_{10^{\prime}} \alpha_{02}}\right) \log \frac{\alpha_{10} \alpha_{0^{\prime} 2}}{\alpha_{10^{\prime}} \alpha_{02}}
\end{gathered}
$$

- Precisely Balitsky\&Chirilli's (N=4) result!!!
[Balistky\&Chirilli '07,08]
- Eigenvalues match 'Pomeron trajectory'
[Fadin\&Lipatov(\&Kotikov) '98;
Ciafaloni\&Gamici ‘98]

- Full non-planar NLO result also available ($\mathrm{N}=4 \& \mathrm{QCD}$)

$$
\begin{align*}
K^{(2)}= & \int_{i, j, k} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{i j k ; 00^{\prime}}^{(2) \ell} i f^{a b c}\left(L_{i ; 0}^{a} L_{j ; 0^{\prime}}^{b} R_{k}^{c}-R_{i ; 0}^{a} R_{j ; 0^{\prime}}^{b} L_{k}^{c}\right) \\
& +\int_{i, j} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{i j ; 00^{\prime}}^{(2) N=4, \ell}\left(f^{a b c} f^{a^{\prime} b^{\prime} c^{\prime}} U_{0}^{b b^{\prime}} U_{0^{\prime}}^{c c^{\prime}}-\frac{C_{A}}{2}\left(U_{0}^{a a^{\prime}}+U_{0^{\prime}}^{a a^{\prime}}\right)\right)\left(L_{i}^{a} R_{j}^{a^{\prime}}+R_{i}^{a^{\prime}} L_{j}^{a}\right) \\
& +\int_{i, j} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}} \gamma_{K}^{(2)}\left(R_{i ; 0}^{a} L_{j}^{a}+L_{i ; 0}^{a} R_{j}^{a}\right)+K^{(2) N \neq 4} . \tag{3.32}
\end{align*}
$$

$L_{i ; 0}^{a} \equiv\left(L_{i}^{a^{\prime}} U_{0}^{a^{\prime} a}-R_{i}^{a}\right)$

$$
\begin{align*}
\alpha_{0 i} \alpha_{0^{\prime} j} K_{i j k ; 00^{\prime}}^{(2) \ell}= & \frac{\alpha_{i j}}{\alpha_{00^{\prime}}} \log \frac{\alpha_{0^{\prime} i} \alpha_{0^{\prime} j} \alpha_{0 k}^{2}}{\alpha_{0 i} \alpha_{0 j} \alpha_{0^{\prime} k}^{2}}+\frac{\alpha_{i k} \alpha_{j k}}{\alpha_{0 k} \alpha_{0^{\prime} k}} \log \frac{\alpha_{i k} \alpha_{0^{\prime} j} \alpha_{0 k}}{\alpha_{j k} \alpha_{0 i} \alpha_{0^{\prime} k}}+\frac{\alpha_{0^{\prime} i} \alpha_{j k}}{\alpha_{00^{\prime}} \alpha_{0^{\prime} k}} \log \frac{\alpha_{j k} \alpha_{0 i} \alpha_{00^{\prime}} \alpha_{0^{\prime} k}}{\alpha_{0 k}^{2} \alpha_{0^{\prime} i} \alpha_{0^{\prime} j}} \\
& -\frac{\alpha_{i k} \alpha_{0 j}}{\alpha_{0 k} \alpha_{00^{\prime}}} \log \frac{\alpha_{i k} \alpha_{0^{\prime} j} \alpha_{00^{\prime}} \alpha_{0 k}}{\alpha_{00^{\prime} k}^{2} \alpha_{0 i} \alpha_{0 j}}+\frac{\alpha_{i k} \alpha_{0^{\prime} j}}{\alpha_{0^{\prime} k} \alpha_{00^{\prime}}} \log \frac{\alpha_{i k} \alpha_{00^{\prime}}}{\alpha_{0 k} \alpha_{0^{\prime} i}}-\frac{\alpha_{0 i} \alpha_{j k}}{\alpha_{0 k} \alpha_{00^{\prime}}} \log \frac{\alpha_{j k} \alpha_{00^{\prime}}}{\alpha_{0^{\prime} k} \alpha_{0 j}} \\
K_{i j ; 00^{\prime}}^{(2) N=4, \ell}= & \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{00^{\prime} \alpha_{0^{\prime} j}}}\left(2 \log \frac{\alpha_{i j} \alpha_{00^{\prime}}}{\alpha_{0^{\prime} i} \alpha_{0 j}}+\left[1+\frac{\alpha_{i j} \alpha_{00^{\prime}}}{\alpha_{0 i} \alpha_{0^{\prime} j}-\alpha_{0^{\prime} i} \alpha_{0 j}}\right] \log \frac{\alpha_{0 i} \alpha_{0^{\prime} j}}{\alpha_{0^{\prime} i} \alpha_{0 j}}\right) \tag{3.33}
\end{align*}
$$

Precisely the same as NLO B-JIMWLK result

 (cf's Lublinski's talk) Balitsky\&Chirilli '14]
Upshots:

- Use building blocks that are standard within the pQCD/amplitudes community: soft currents
- (Already known to two-loops)
- All steps Lorentz-invariant (=SL2(C) conformal symmetry of transverse plane)
- No Fourier transform step: $\theta \leftrightarrow x_{\perp}$
- Agreement is both:
-check on duality
-check on recent NLO_{27} results

Wait.They look different!

```
H
-2 < <r,y,z
+ < <x,y,z,\mp@subsup{z}{}{\prime}
+ < <w,x,yz,z\mp@subsup{z}{}{\prime}
    - J}\mp@subsup{J}{L}{a}(w)\mp@subsup{S}{A}{cd}(z)\mp@subsup{S}{A}{be}(\mp@subsup{z}{}{\prime})\mp@subsup{J}{R}{d}(x)\mp@subsup{J}{R}{e}(y)
+ < <w,x,y,z
+ }\mp@subsup{\int}{w,x,y}{}\mp@subsup{K}{3,0}{}(w,x,y)\mp@subsup{f}{}{bde}[\mp@subsup{J}{L}{d}(x)\mp@subsup{J}{L}{e}(y)\mp@subsup{J}{L}{b}(w)-\mp@subsup{J}{R}{d}(x)\mp@subsup{J}{R}{e}(y)\mp@subsup{J}{R}{b}(w)
- there are relations between real\&virtual
\[
K_{3,0}(w, x, y)=-\frac{1}{3}\left[\int_{z, z^{\prime}} K_{3,2}\left(w, x, y ; z, z^{\prime}\right)+\int_{z} K_{3,1}(w, x, y ; z)\right]
\]
- Upshot: grouping in previous slide: all convergent

\section*{Wait. QCD is not conformal!}
- QCD non-global logs in the same way
- Regge and Soft kernels don't quite agree:
\[
K_{\text {Regge }}-K_{\text {Soft }}=\left(11 C_{A}-4 n_{F} T_{F}-n_{S} T_{S}\right) \int\left(\frac{z_{i j}^{2}}{z_{0 i}^{2} i_{0 j}^{2}} \log \left(\mu^{2} z_{i j}^{2}\right)+\frac{z_{z_{j}^{2}}^{2}-z_{0^{2}}^{2}}{z_{i i}^{2} z_{0 j}^{2}} \log \frac{z_{z_{i j}^{2}}^{2}}{z_{0_{j j}}^{2}}\right)
\]
- diff prop to \(\beta=\) conformal breaking, as expected!
\(\Rightarrow\) difference computable from matter loops!

\section*{Rapidity vs Soft divergences}
- Work in \(\mathrm{d}=4-2 \varepsilon\) dimensions:
\[
\begin{array}{ll}
K_{\text {Soft }} & \text { does not depend on } \varepsilon \\
K_{\text {Regge }}(\epsilon) & \text { does }
\end{array}
\]
- In the conformal dimension, they are equal!
\[
K_{\text {Regge }}\left(2 \epsilon=-\beta\left(\alpha_{s}\right)\right)=K_{\text {soft }}
\]
- Given the \(\varepsilon\)-dependence at lower loops, they are equivalent to each other!!!

A slide from lan Balitsky's talk (@Edinburgh):

\section*{NLO evolution of composite "conformal" dipoles in QCD}
\[
\begin{aligned}
& \text { I. B. and G. Chirilli } \\
& a \frac{d}{d a}\left[\operatorname{tr}\left\{U_{z_{1}} U_{z_{2}}^{\dagger}\right\}\right]_{a}^{\text {comp }}=\frac{\alpha_{s}}{2 \pi^{2}} \int d^{2} z_{3}\left(\left[\operatorname{tr}\left\{U_{z_{1}} U_{z_{3}}^{\dagger}\right\} \operatorname{tr}\left\{U_{z_{3}} U_{z_{2}}^{\dagger}\right\}-N_{c} \operatorname{tr}\left\{U_{z_{1}} U_{z_{2}}^{\dagger}\right\}\right]_{a}^{\text {comp }}\right. \\
& \times \frac{z_{12}^{2}}{z_{12}^{2} z_{23}^{2}}\left[1+\frac{\alpha_{s} N}{4 \pi}\left(b \ln z_{12}^{2} \mu^{2}+b \frac{z_{13}^{2}-z_{23}^{2}}{z_{13}^{2} z_{23}^{2}} \ln \frac{z_{13}^{2}}{z^{2}}-\frac{67}{9}-\frac{\pi^{2}}{3}\right)\right]=\text { O(eps)term } \\
& \text { in LO BK } \\
& +\frac{\alpha_{s}}{4 \pi^{2}} \int \frac{d^{2} z_{4}}{z_{34}^{4}}\left\{\left[-2+\frac{z_{23} z_{23}^{2}+z_{24} z_{13}^{2}-4 z_{12}^{2} z_{34}^{2}}{2\left(z_{23}^{2} z_{23}^{2}-z_{24-13}^{2}\right)} \ln \frac{z_{23}^{2} z_{23}^{2}}{z_{24}^{2} z_{13}^{2}}\right]\right. \\
& \left.\times\left[\operatorname{tr}\left\{U_{z_{1}} U_{z_{3}}^{\dagger}\right\} \operatorname{tr}\left\{U_{z_{3}} U_{z_{4}}^{\dagger}\right\}\left\{U_{z_{4}} U_{z_{2}}^{\dagger}\right\}-\operatorname{tr}\left\{U_{z_{1}} U_{z_{3}}^{\dagger} U_{z_{4}} U_{z_{2}}^{\dagger} U_{z_{3}} U_{z_{4}}^{\dagger}\right\}-\left(z_{4}-z_{3}\right)\right]\right]^{\prime} \text { conformal } \\
& +\frac{z_{12}^{2} z_{34}^{2}}{z_{1}^{2}}\left[2 \ln \frac{z_{12}^{2} z_{34}^{2}}{z_{23} z_{24}^{2}}+\left(1+\frac{z_{12}^{2} z_{34}^{2}}{z_{13}^{2} z_{24}-z_{23} z_{23}^{2}}\right) \ln \frac{z_{13}^{2} z_{24}^{2}}{z_{23}^{2} z_{23}^{2}}\right] \quad \text { QCD' bit } \\
& \times\left[\operatorname{tr}\left\{U_{z_{1}} U_{z_{3}}^{\dagger}\right\} \operatorname{tr}\left\{U_{z_{3}} U_{z_{4}}^{\dagger}\right\} \operatorname{tr}\left\{U_{z_{4}} U_{z_{2}}^{\dagger}\right\}-\operatorname{tr}\left\{U_{z_{1}} U_{z_{4}}^{\dagger} U_{z_{3}} U_{z_{2}}^{\dagger} U_{z_{4}} U_{z_{3}}^{\dagger}\right\}-\left(z_{4} \rightarrow z_{3}\right)\right\} \mathbf{N}=4 \text { bit } \\
& b=\frac{11}{3} N_{c}-\frac{2}{3} n_{f}
\end{aligned}
\]
\(\mathrm{K}_{\text {NLO BK }}=\) Running coupling part + Conformal "non-analytic" (in j) part
+ Conformal analytic ( \(\mathcal{N}=4\) ) part
Linearized \(\mathrm{K}_{\text {NLO вк }}\) reproduces the known result for the forward NLO BFKL kernel.

\section*{Outline}
I. New duality between rapidity \& soft evolution
2. Rapidity-Soft duality as a computation tool -What is needed at NLO -Why does it work even in QCD?
3. Outline of NNLO (so far, \(\mathrm{N}=4 \mathrm{SYM}\) )
-test I: integrability
-test 2: collinear limits\& DGLAP

\section*{NNLO}
- Triple soft current at tree-level
\(\Rightarrow\) extract from known 4-particle integrand \(\checkmark\)
- Double soft current at one-loop
\(\Rightarrow\) extract from known one-loop 6-point \(\sqrt{ }\)
- Single soft current at two-loops
\(\Rightarrow\) not needed: contribution really just \(\gamma_{K}^{(3)}\)
- Fully virtual IR divergences at three-loops \(\Rightarrow\) not needed: KLN fixes it from rest \(\checkmark\)
- Sample graphs we computed/borrowed:
triple soft emission (squared) at tree-level
double soft emission: tree/one-loop interference

- Recursive subtraction of subdivergences:
\[
\begin{aligned}
& F_{[102]}^{\mathrm{sub}} \equiv F_{[102]}=1, \\
& F_{\left[\begin{array}{lll}
100^{\prime} & 2
\end{array}\right]}^{\mathrm{sub}} \equiv F_{\left[\begin{array}{ll}
100^{\prime} 2
\end{array}\right]}-\left[\begin{array}{lll}
1 & 0 & 0^{\prime}
\end{array}\right]\left[\begin{array}{ll}
1 & 0^{\prime} \\
2
\end{array}\right]-\left[\begin{array}{ll}
0 & 0^{\prime} \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right], \\
& F_{\left[\begin{array}{ll}
100^{\prime} 0^{\prime \prime} & 2
\end{array}\right]}^{\text {sub }} \equiv F_{\left[\begin{array}{lll}
100^{\prime} 0^{\prime \prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0^{\prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime} 0^{\prime \prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
0 & 0^{\prime} & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 00^{\prime \prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
0^{\prime} & 0^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 00^{\prime} & 2
\end{array}\right]} \\
& -\left[\begin{array}{lll}
1 & 00^{\prime} & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime \prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
0 & 0^{\prime} 0^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right] \\
& -\left[\begin{array}{lll}
1 & 0 & 0^{\prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime} & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime \prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
0^{\prime} & 0^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0^{\prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right]-\left[\begin{array}{lll}
0 & 0^{\prime} & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime \prime} & 2
\end{array}\right] \\
& -\left[\begin{array}{lll}
0 & 0^{\prime} & 0^{\prime \prime}
\end{array}\right]\left[\begin{array}{lll}
0 & 0^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0^{\prime}
\end{array}\right]\left[\begin{array}{lll}
0^{\prime} & \delta^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime} & 2
\end{array}\right]-\left[\begin{array}{lll}
0^{\prime} & 0^{\prime \prime} & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0^{\prime}
\end{array}\right]\left[\begin{array}{lll}
1 & 0^{\prime} & 2
\end{array}\right] .(4.20 \mathrm{c}) \\
& \text { energy step functions }
\end{aligned}
\]
- Cleanly removes iterations of lower-loop evolution

\section*{We computed only finite absolutely convergent integrals} result:
\[
\begin{align*}
K_{\left[100^{\prime} 2\right]}^{(3)}= & \left(1-\frac{u}{1-v}\right) \log v\left[\log u \log \frac{v}{u}-\frac{1}{3} \log ^{2} v-4 \zeta_{2}\right]+2(1+v-u)\left(\zeta_{2} \log \frac{u}{v}-2 \zeta_{3}\right) \\
& +\left(\frac{2 u}{1-v}+v-u-1\right)\left[4 \operatorname{Li}_{3}\left(1-\frac{1}{v}\right)+2 \operatorname{Li}_{2}\left(1-\frac{1}{v}\right) \log \frac{v}{u}\right]-\frac{5}{6} \log ^{3} u \\
& +4\left(\operatorname{Li}_{3}(x)+\operatorname{Li}_{3}(\bar{x})-2 \zeta_{3}\right)-2\left(\operatorname{Li}_{2}(x)+\operatorname{Li}_{2}(\bar{x})+2 \zeta_{2}\right) \log u .  \tag{4.35}\\
K_{\left[100^{\prime} 0^{\prime \prime} 2\right]}^{(3)}= & \left(1-\frac{u_{3}}{1-v_{1} v_{2}}\right)\left[\begin{array}{l}
2 \operatorname{Li}_{2}\left(1-\frac{1}{v_{1} v_{2}}\right)-2 \operatorname{Li}_{2}\left(1-\frac{1}{v_{1}}\right)-2 \operatorname{Li}_{2}\left(1-\frac{1}{v_{2}}\right) \\
+\log v_{1} \log v_{2}+\log \left(v_{1} v_{2}\right)\left(\log \left(u_{1} u_{2}\right)-\frac{3}{2} \log u_{3}\right)
\end{array}\right] \\
& +\left(u_{1} u_{2}-u_{1} v_{2}-u_{2} v_{1}+v_{1}+v_{2}-u_{1}-u_{2}+u_{3}\right)\left[\operatorname{Li}_{2}\left(1-\frac{1}{v_{1} v_{2}}\right)-\zeta_{2}\right] \\
& +3 \log u_{1} \log u_{2}-\frac{3}{2} \log ^{2} u_{3}+(1+P)\left(f+f_{1}\right), \tag{4.23}
\end{align*}
\]

Fast to evaluate, attached in computer-friendly format to arXiv submission.

- Pomeron trajectory \(=\) linearized eigenvalue
\[
U_{i j}=1-\frac{1}{N_{c}} \mathcal{U}_{i j}
\]
for eigenfunction: \(\mathcal{U}_{m, \nu}=\left|z_{i}-z_{j}\right|^{i \nu} e^{i m \arg \left(z_{i}-z_{j}\right)}\)
\[
\frac{d}{d \eta} \mathcal{U}_{m, \nu}=[j(m, \nu)-1] \mathcal{U}_{m, \nu} \quad(\Delta=2+i \nu)
\]

\section*{Tests}
- Collinear limit \(v \rightarrow \pm i\) controlled by small-x limit of DGLAP
\(\omega^{(3)} \rightarrow^{+g^{6}\left(\frac{1024}{\gamma^{5}}-\frac{512}{\gamma^{8}} \zeta_{2}+\frac{576}{\gamma^{2}} \zeta_{3}-\frac{464}{\gamma} \zeta_{4}+840 G_{5}+64 \zeta_{2} \zeta_{3}+\gamma\left(-40 \zeta_{3}^{2}-373 \zeta_{6}\right)\right.}\)
\[
\begin{equation*}
\left.+\gamma^{2}\left(-8 \delta_{2} \zeta_{5}-86 \zeta_{3} S_{4}+\frac{1001}{4} \zeta_{7}\right)\right) . \tag{21}
\end{equation*}
\]
[Velizhanin 'I5]
- Analytic expression for \(m=0\) conjectured using Integrability of planar \(\mathrm{N}=4\)
\[
\begin{align*}
\frac{F_{0, \nu}^{(\text {() }}}{32}= & -S_{5}+2 S_{-4,1}-S_{-3,2}+2 S_{-2,3}-S_{2,-3}-2 S_{3,-2}+4 S_{-3,1,1}+4 S_{1,-3,1}+2 S_{1,-2,2} \\
& +2 S_{1,2,-2}+2 S_{2,1,-2}-8 S_{1,-2,1,1}+\zeta_{2}\left(S_{1} S_{2}-3 S_{-3}+2 S_{-2,1}-4 S_{1,-2}\right)-\frac{49}{2} \zeta_{4} S_{1} \\
& +7 \zeta_{3}\left(2 S_{1,-1}+2\left(S_{1}-S_{-1}\right) \log 2-S_{-2}-\log ^{2} 2\right)+\left(8 \zeta_{-3,1}-17 \zeta_{4}\right)\left(S_{-1}-S_{1}+\log 2\right) \\
& -\frac{1}{2} \zeta_{3} S_{2}+4 \zeta_{5}-6 \zeta_{2} \zeta_{3}+8 \zeta_{-3,1,1} . \tag{C.3}
\end{align*}
\]
[new result for \(m>0\) ]

\section*{[more on DGLAP vs BFKL: use dimensions instead of \(\gamma\) ]}


Figure 6. Level repulsion between the Pomeron and DGLAP trajectories for \(m=0\) as a function of scaling dimension, illustrating the \(\nu= \pm i\) singularities. (LO expressions plotted with \(\lambda=g_{\mathrm{YM}}^{2} N_{c}=1\).)
\[
\begin{equation*}
j \approx 1+\frac{\Delta-3 \pm \sqrt{(\Delta-3)^{2}+32 g^{2}}}{2}, \quad \Delta=2+i \nu \tag{5.16}
\end{equation*}
\]
[for polarized PDFs: level crossing is at \(v=0\) ]
Bartels, Ermolaev\&Ryskin '96] [cf Sievert \& Kovchegov’s talks]

\section*{Conclusions}
- Established equivalence between two evolutions: Rapidity \(\Leftrightarrow\) Soft
(in pQCD)
- NNLL Evolution now known in planar N=4 SYM:
-linear eigenvalue for all \(m=0,1,2,3, \ldots\)
-include nonlinear interactions
- QCD now in sight
- Study convergence\& resummations?
- Extend duality to impact factors?

\section*{\(\mathrm{m}=\mathrm{I}\) (leading Odderon trajectory)}

note: Odderon intercept=I to all orders in \(\lambda\). Agrees with strong coupling!

\section*{On the Odderon intercept}
- \(\mathrm{m}=\mathrm{I}, \mathrm{v}=0\) is a very special wavefunction:
\[
\mathcal{U}_{12}=1-\frac{1}{N_{c}}\left(z_{1}-z_{2}\right)
\]
- Strings of dipoles in planar limit telescope:
\[
\begin{aligned}
\mathcal{U}_{10} \mathcal{U}_{02} & \left.=1-\frac{1}{N_{c}}\left(\left(z_{1}-\not \approx \not\right)\right)+\left(\not \approx \neq z_{2}\right)\right)+O\left(1 / N_{c}^{2}\right) \\
& =1-\frac{1}{N_{c}}\left(z_{1}-z_{2}\right)=\mathcal{U}_{12} \\
\mathcal{U}_{10} \mathcal{U}_{00^{\prime} 2} \mathcal{U}_{0^{\prime} 2} & =\mathcal{U}_{12}
\end{aligned}
\]
- Cancel in evolution. Thm: Odderon intercept vanishes to all order in \(\lambda\) in planar limit

\section*{matter loop contributions to NGLs:}
\[
\begin{align*}
K^{(2) N \neq 4}= & \int_{i, j} \int \frac{d \Omega_{0}}{4 \pi} \frac{d \Omega_{0^{\prime}}}{4 \pi} \frac{1}{\alpha_{00^{\prime}}}\left[\frac{\alpha_{i j} \log \frac{\alpha_{0 i} \alpha_{0^{\prime} j}}{\alpha_{0^{\prime} i} \alpha_{0 j}}}{\alpha_{0 i} \alpha_{0^{\prime} j}-\alpha_{0^{\prime} i} \alpha_{0 j}}\right]\left(L_{i}^{a} R_{j}^{a^{\prime}}+R_{i}^{a^{\prime}} L_{j}^{a}\right) \\
& \times\left\{2 n_{F} \operatorname{Tr}_{R}\left[T^{a} U_{0} T^{a^{\prime}} U_{0^{\prime}}^{\dagger}\right]-4 f^{a b c} f^{a^{\prime} b^{\prime} c^{\prime}} U_{0}^{b b^{\prime}} U_{0^{\prime}}^{c c^{\prime}}-\left(n_{F} T_{R}-2 C_{A}\right)\left(U_{0}^{a a^{\prime}}+U_{0^{\prime}}^{a a^{\prime}}\right)\right\} \\
+ & \int_{i, j} \int \frac{d \Omega_{0}}{4 \pi} \frac{d \Omega_{0^{\prime}}}{4 \pi} \frac{1}{2 \alpha_{00^{\prime}}^{2}}\left[\frac{\alpha_{0 i} \alpha_{0^{\prime} j}+\alpha_{0^{\prime} i} \alpha_{0 j}}{\alpha_{0 i} \alpha_{0^{\prime} j}-\alpha_{0^{\prime} i} \alpha_{0 j}} \log \frac{\alpha_{0 i} \alpha_{0^{\prime} j}}{\alpha_{0^{\prime} i} \alpha_{0 j}}-2\right]\left(L_{i}^{a} R_{j}^{a^{\prime}}+R_{i}^{a^{\prime}} L_{j}^{a}\right) \\
& \times\left\{\begin{array}{c}
2\left(n_{S}-2 n_{F}\right) \operatorname{Tr}_{R}\left[T^{a} U_{0} T^{a^{\prime}} U_{0^{\prime}}^{\dagger}\right]+2 f^{a b c} f^{a^{\prime} b^{\prime} c^{\prime}} U_{0}^{b b^{\prime}} U_{0^{\prime}}^{c c^{\prime}} \\
-\left(\left(n_{S}-2 n_{F}\right) T_{R}+C_{A}\right)\left(U_{0}^{a a^{\prime}}+U_{0^{\prime}}^{a a^{\prime}}\right)
\end{array}\right\} \\
+ & \int_{i, j} 2 \pi i b_{0} \log \left(\alpha_{i j}\right)\left(L_{i}^{a} L_{j}^{a}-R_{i}^{a} R_{j}^{a}\right) . \tag{3.34}
\end{align*}
\]```

