Analyticity in Spin and Causality in Conformal Theories

(based on I703.00278)

Simon Caron-Huot

McGill University

[Nuclear Theory]/RIKEN seminar, Brookhaven, April 18 ${ }^{\text {th }} 2017$

Outline

The aim of this talk will be to present a formula...
I. Why conformal Regge theory?
-Conformal bootstrap and large spin physics
-AdS/CFT and bulk locality
2. CFT Froissart-Gribov formula
-Why operators are analytic in spin
-New ingredients in CFT (ANEC\&bound on chaos)
3. Applications:
-operators of large spin
-CFTs dual to gravity: causality\&bulk locality

Conformal bootstrap

- Input: Operator Product Expansion

$$
\lim _{y \rightarrow x} \mathcal{O}(x) \mathcal{O}(y)=\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O} \mathcal{O}^{\prime}}(x-y)^{\#} \mathcal{O}^{\prime}(x) \quad \text { (+derivatives) }
$$

- Converges in finite radius
- In CFT, operator have scaling exponents:

$$
\#=\Delta_{\mathcal{O}^{\prime}}-2 \Delta_{\mathcal{O}}
$$

- Dynamics: Crossing Equation

$$
\begin{aligned}
& \sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O} \mathcal{O}^{\prime}}^{2}\left(x_{12} x_{34}\right)^{\#}=\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O} \mathcal{O} \mathcal{O}^{\prime}}^{2}\left(x_{23} x_{14}\right)^{\#} \\
&(+ \text { derivatives })
\end{aligned}
$$

Why is it constraining?

Imagine points are slightly closer to one limit:

$$
\begin{aligned}
\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O O}^{\prime}}^{2}(\text { smaller }) & =\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O O}^{\prime}}^{2}(\text { bigger }) \\
\Rightarrow 0 & =\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O} \mathcal{O}^{\prime}}^{2}(\text { bigger }- \text { smaller })
\end{aligned}
$$

Naively, no solution!! (since f2's are positive)

Why is it constraining?

Imagine points are slightly closer to one limit:

$$
\begin{aligned}
\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O O ^ { \prime }}}^{2}(\text { smaller }) & =\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O O O}^{\prime}}^{2}(\text { bigger }) \\
\Longrightarrow 0 & =\sum_{\mathcal{O}^{\prime}} f_{\mathcal{O} \mathcal{O O}^{\prime}}^{2}(\text { bigger }- \text { smaller })
\end{aligned}
$$

Naively, no solution!! (since f2's are positive)
But: first few terms go the other way: $\quad\left(\#=\Delta_{\mathcal{O}^{\prime}}-2 \Delta_{\mathcal{O}}\right)$

$$
\Rightarrow \sum_{\text {first few }} f_{\mathcal{O O O}^{\prime}}^{2}(\text { positive })=\sum_{\text {rest }} f_{\mathcal{O O O}^{\prime}}^{2}(\text { positive })
$$

Numerical exclusion plots: the 3D Ising CFT

Allowed Region Assuming $\Delta\left(\epsilon^{\prime}\right) \geq 3$ (next-to-lightest
Lightest Δ_{ϵ} Z_{2} even)
Z_{2} even

Lightest ${ }_{80} \Delta_{\sigma}\left(Z_{2}\right.$ odd $)$
[From: El-Showk,Paulos,Poland, , Rychkov,Simmons-Duffin\&Vichi 'I2]

As one learns more about next-to-lightest op, an island is carved out

The 'tip' which can't be excluded, must be the theory we're looking for!

Computer algorithm to solve multiple inequalities: semidefinite programming

Leads to precise, quantitative critical exponents, in various CFTs. Ex: 3D Ising:

spin $\& \mathbb{Z}_{2}$	name	Δ	OPE coefficient
$\ell=0, \mathbb{Z}_{2}=-$	σ	$0.518154(15)$	
$\ell=0, \mathbb{Z}_{2}=+$	ϵ	$1.41267(13)$	$f_{\sigma \sigma \epsilon}^{2}=1.10636(9)$
	ϵ^{\prime}	$3.8303(18)$	$f_{\sigma \sigma \epsilon^{\prime}}^{2}=0.002810(6)$
$\ell=2, \mathbb{Z}_{2}=+$	T	3	$c / c_{\text {free }}=0.946534(11)$
	T^{\prime}	$5.500(15)$	$f_{\sigma \sigma T^{\prime}}^{2}=2.97(2) \times 10^{-4}$

Why CFTs?

- CFTs are interesting:
- Critical exponents in phase transitions
- Many interesting theories are near-conformal (e.g. QCD at high energies)
- Any theory of gravity in AdS is dual to a CFT
- CFTs are simpler:
- 4-pt function depends on only 2 cross-ratios
(compare with 6 distances: $x_{i j}^{2} / \ell_{0}^{2} \quad$!)
- total derivatives not independent operators

Empirical observation: operators lie in smooth families

$$
\tau_{\left[\sigma \sigma \sigma_{0}(\bar{h})\right.}=\Delta-j
$$

[Plot from Simmons-Duffin 'I6]

Why Conformal Regge Theory?

To explain why operators organize into families ('Regge trajectories')

Quantitatively, a Froissart-Gribov inversion formula:

$$
f_{\mathcal{O O O}}{ }^{\prime}=\int d z d \bar{z}(\ldots) " \operatorname{Im} \mathcal{M} "
$$

In AdS/CFT, this formula will know about bulk locality !

Second motivation

Conjecture:
Any large-N CFT with a large gap of operator dimension has an AdS dual, down to lengths $\ell_{\text {AdS }} / \Delta_{\text {gap }}$
[Heemskerk,Penedones,Polchinski\& Sully '09]
They proved: solutions to crossing in large-N CFTs w/gap \longleftrightarrow local interactions in AdS

But why are higher-dim interactions suppressed by powers of $\Delta_{\text {gap }}$?

Effective field theory in AdS:

In string theory, for example,
$M \sim M_{\text {string }} \gg 1 / R_{\text {AdS }}$
Suppression would be clear from a 'dispersion relation in the flat space limit of AdS':

$$
\mathcal{M}(s) \sim \int_{M^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}-s} \operatorname{Im} \mathcal{M}\left(s^{\prime}\right) \sim \frac{1}{M^{2}}+\frac{s}{M^{4}}+\ldots
$$

Sigh, if only a CFT formula existed that read like this!

Why Conformal Regge Theory?

To explain why operators organize into families ('Regge trajectories')

Quantitatively, a Froissart-Gribov inversion formula:

$$
f_{\mathcal{O O O}}{ }^{\prime}=\int d z d \bar{z}(\ldots) " \operatorname{Im} \mathcal{M} "
$$

In AdS/CFT, this formula will know about bulk locality !

Outline

2. CFT Froissart-Gribov formula
-Why operators are analytic in spin
-New ingredients in CFT (ANEC\&bound on chaos)
3. Applications:
-operators of large spin
-CFTs dual to gravity: causality\&bulk locality

Why is physics analytic in spin?

Short answer:
because Euclidean physics has to resum into something sensible at high energies

- Toy model: single-variable power series

$$
f(x)=\sum_{j=1}^{\infty} f_{j} x^{j}
$$

('Euclidean OPE')

- Assume:
$-f(x)$ is analytic in cut plane $C \backslash[1, \infty)$
- $|f(x) / x| \rightarrow 0$ at infinity
(large $x=$
'large energy')
\Rightarrow What does this tell us about the $\mathrm{f}_{\mathrm{j}} \mathrm{s}$?
- Q : How to extract f_{j} from $\mathrm{f}(\mathrm{x})$?
- A: Cauchy

- Q : How to extract f_{j} from $\mathrm{f}(\mathrm{x})$?
- A: Cauchy

Deform the contour:

Basic inversion formula

$$
f_{j}=\int_{1}^{\infty} \frac{d x}{x} x^{-j} \frac{\operatorname{Disc} f(x)}{2 \pi i}
$$

(Sanity check:

$$
\begin{gathered}
\left.f(x)=-\log (1-x) \Rightarrow \frac{\operatorname{Disc} f(x)}{2 \pi i}=1\right) \\
\Rightarrow f_{j}=1 / j
\end{gathered}
$$

\Rightarrow Good high-energy behavior leads to:
-Taylor coefficients are analytic for $\operatorname{Re}[j] \geq I$!
-Determined by imaginary part of amplitude

Froissart-Gribov

formula

inverts Legendre polynomials:

$$
\begin{aligned}
& A(s, \cos \theta)=\sum_{j=0}^{\infty} a_{j}(s) P_{j}(\cos \theta) \\
& \Leftrightarrow a_{j}^{(t)}=\int_{\eta_{0}}^{\infty} d \eta Q_{j}(\cosh \eta) \operatorname{Disc} A(\cosh (\eta)) \\
&+(-1)^{j}[\mathrm{t} \text {-channel }]
\end{aligned}
$$

- Explains why S-matrix can be decomposed into analytic-in-spin partial waves
- Foundation of Regge theory

Classic application to QCD

$\mathrm{t}<0$ obtained from $\pi^{-} p \rightarrow \pi^{0} n$ data, (@3.6,5.85\&13.3GeV/c)
[from Donnachie, Dosch,Landshoff\&Nachtmann]

Suppose we had a Froissart-Gribov formula in CFT

 What should be ' $\operatorname{mm} \mathcal{M}$ ' ?- We consider 4-point correlator in $\mathrm{CFT}_{\mathrm{d}}$

- Symmetrical param. within Rindler wedges:

$$
\begin{aligned}
& -\rho_{2}=\rho_{1}=1 \\
& -\rho_{3}=\rho_{4} \equiv \rho
\end{aligned}
$$

- We consider 4-point correlator in $\mathrm{CFT}_{\mathrm{d}}$

$$
\begin{aligned}
& \uparrow_{\text {time }} \zeta_{\rho}^{\bar{\rho}} \\
& -\rho_{2}=\rho_{1}=1 \\
& -\rho_{3}=\rho_{4} \equiv \rho
\end{aligned}
$$

- at small ρ, s-channel OPE:

$$
\left.G(\rho, \bar{\rho})=\sum_{j, \Delta} c_{j, \Delta} \rho^{\frac{\Delta-j}{2}} \bar{\rho}^{\frac{\Delta+j}{2}}=\right\rangle_{1}^{2} j, \Delta<_{3}^{4}
$$

(one normally replaces power series by 'blocks' which include derivatives of primary operators:

$$
\begin{array}{ll}
G_{J, \Delta}(z, \bar{z})=\frac{k_{\Delta-J}(z) k_{\Delta+J}(\bar{z})+k_{\Delta+J}(z) k_{\Delta-J}(\bar{z})}{1+\delta_{J, 0}} & (d=2), \tag{d=2}\\
G_{J, \Delta}(z, \bar{z})=\frac{z \bar{z}}{\bar{z}-z}\left[k_{\Delta-J-2}(z) k_{\Delta+J}(\bar{z})-k_{\Delta+J}(z) k_{\Delta-J-2}(\bar{z})\right] & (d=4) .
\end{array}
$$

where

$$
k_{\beta}(z)=z^{\beta / 2}{ }_{2} F_{1}(\beta / 2, \beta / 2, \beta, z) \quad z=\frac{4 \rho}{(1+\rho)^{2}}
$$

This will be important below, but Taylor series will suffice for now.)

- Take x_{41} and x_{23} time-like:

- Certainly looks like a 'scattering amplitude’
- Claim:

$$
S \equiv \frac{G}{G_{\text {Eucl }}} \quad \text { satisfies } \quad|S| \leq 1
$$

proof

- s-channel OPE diverges upon entering light-cone
- Use OPE around t-channel (timelike one)

$$
G(\rho, \bar{\rho})=\sum_{j, \Delta} c_{j, \Delta}\left(\frac{1-\sqrt{\rho}}{1+\sqrt{\rho}}\right)^{\Delta-j}\left(\frac{1-\sqrt{\bar{\rho}}}{1+\sqrt{\bar{\rho}}}\right)^{\Delta+j}
$$

[Hogervorst\&Rychkov 'I3]

- For timelike, $\rho>1$, only get extra phases:

$$
\begin{aligned}
|G(\rho, \bar{\rho})| & =\mid \sum(\text { positive }) e^{i \pi(\Delta-j)} \mid \\
& \leq \sum(\text { positive })=G(1 / \rho, \bar{\rho}) \equiv G_{\text {Eucl }}
\end{aligned}
$$

This means that an 'imaginary part' is positive:

$$
\begin{gathered}
S=1+i \mathcal{M} \\
|S| \leq 1
\end{gathered} \quad \Rightarrow \operatorname{Im} \mathcal{M}>0
$$

Since S contains the ' I ', this is double discontinuity:

$$
\begin{aligned}
G_{\text {Eucl }} & \propto 1 \\
G_{\text {below }} & \propto 1+i \mathcal{M} \\
G_{\text {above }} & \propto 1-i \mathcal{M}^{*} \\
\Rightarrow 2 \operatorname{Im} \mathcal{M} & \propto 2 G_{\text {Eucl }}-G_{\text {above }}-G_{\text {below }} \\
& \equiv \mathrm{dDisc} G \\
& >0
\end{aligned}
$$

Writing M from Im M:'dispersion relation’
This doesn't quite work because analytic structure in coordinate space is weird

For example, fix $\rho \bar{\rho}: \quad \rho=\sigma w$

$$
\bar{\rho}=\sigma / w
$$

The dragons shrink in the Regge limit

$$
w \rightarrow \infty
$$

This corresponds to a boosted coordinates:

$$
\begin{aligned}
& \rho=\sigma w \\
& \bar{\rho}=\sigma / w
\end{aligned}
$$

Regge limit dispersion relation:

$$
\mathcal{M}(E)=C+\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d E^{\prime} \operatorname{Im} \mathcal{M}\left(E^{\prime}\right)}{E-E^{\prime}}
$$

Some implications of the dispersion relation:

Look in upper-half-plane:

$$
\operatorname{Im} \mathcal{M}(x+i y)=\int \frac{y d x^{\prime} \operatorname{Im} \mathcal{M}\left(x^{\prime}\right)}{\left(x^{\prime}-x\right)^{2}+y^{2}}>0
$$

\Rightarrow Proof of ANEC:

$$
\mathcal{M}(w) \approx w\left\langle\int_{-\infty}^{\infty} d x^{+} T_{++}\right\rangle_{34} \Rightarrow\left\langle\int d x^{+} T_{++}\right\rangle>0
$$

[Hartman,Kundu\&Tajdini '।6]
(ANEC was proved just a few month earlier using entanglement entropy inequalities)
[Faulkner,Leigh,Parrikar\&Wang,'I6]

Derivative of dispersion relation:

$$
\left(y \partial_{y}-1\right)[\log \operatorname{Im} \mathcal{M}(x+i y)]=-2 \frac{\int \frac{d x^{\prime} y^{2} \operatorname{Im} \mathcal{M}\left(x^{\prime}\right)}{\left(\left(x^{\prime}-x\right)^{2}+y^{2}\right)^{2}}}{\int \frac{d x^{\prime} \operatorname{Im} \mathcal{M}\left(x^{\prime}\right)}{\left(x^{\prime}-x\right)^{2}+y^{2}}} \leq 0
$$

\Rightarrow can't grow faster than linear in energy!

This proves that the Pomeron intercept $j \leq 2$ in CFT
when converted to Rindler time $\mathrm{w}=\mathrm{e}^{\mathrm{t} /(2 \pi \mathrm{~T})}$, this is the
CFT case of the 'bound on chaos' (Lyapunov $\lambda<2 \pi T$)
[Maldacena,Shenker\&Stanford '15]
\Rightarrow Dispersion relation encodes much nice physics!

Because of the 'dragons' at low-energy, this dispersion relation doesn't fully reconstruct the correlator

Following the Froissart-Gribov logic, we'll instead obtain a dispersion relation for OPE coefficients

Froissart-Gribov: how to invert $f(\cos \theta)=\sum_{j=0}^{\infty} f_{j} \cos (j \theta)$?
A: Start from Euclidean inverse, use variable: $w=e^{i \theta}$

$$
\begin{aligned}
f_{j} & \sim \int_{0}^{2 \pi} d \theta \cos (j \theta) f(\cos \theta) \\
& =\oint \frac{d w}{w}\left(w^{j}+w^{-j}\right) f(\cos \theta)
\end{aligned}
$$

Trick is to close the contour on cut:

Result: integral over cut

$$
\begin{aligned}
f_{j}^{(t)} \sim \int_{\eta_{0}}^{\infty} d \eta e^{-j \eta} \operatorname{Disc} f(\cosh (\eta)) \\
+(-1)^{j}[u-c h a n n e l]
\end{aligned}
$$

CFT steps are the same: Euclidean OPE:

$$
G(z, \bar{z})=\sum_{j, \Delta} f_{j, \Delta}^{2} G_{j, \Delta}(z, \bar{z})
$$

- Actually, we first have to make Δ continuous:

$$
\begin{aligned}
& G(z, \bar{z})=\delta_{12} \delta_{34}+\sum_{j=0}^{\infty} \int_{d / 2-i \infty}^{d / 2+i \infty} \frac{d \Delta}{2 \pi i} c(j, \Delta) F_{j, \Delta}(z, \bar{z}) . \\
& F_{j, \Delta}=g_{j, \Delta}+g_{j, d-\Delta}
\end{aligned}
$$

.
= single-valued, needed for self-adjointness of Casimir

- Contour like a Mellin transform
- OPE reproduced if c has correct poles:

$$
c\left(j, \Delta^{\prime}\right) \approx \frac{f_{O O \rightarrow j, \Delta}^{2}}{\Delta-\Delta^{\prime}}
$$

step I. Invert the Euclidean OPE $(\mathrm{SO}(\mathrm{d}+\mathrm{I}, \mathrm{I}))$:

- To extract the coefficients, invoke orthogonality and integrate against block (+shadow):

$$
c(j, \Delta)=\#(j, \Delta) \int d^{2} z \mu(z, \bar{z}) G(z, \bar{z}) F_{j, \Delta}(z, \bar{z})
$$

- Still a Euclidean integral: integer spin, not yet what we want

step 2

- Contour deformation. Use clever variables
[Hogervorst\&Rychkov 'I3]

$$
z=\frac{4 \rho}{(1+\rho)^{2}} \quad w=\sqrt{\rho / \bar{\rho}}=e^{i \theta}
$$

$$
\int d^{2} z \rightarrow \int_{0}^{1} d|\rho| \oint \frac{d w}{w}
$$

The tricky part is to split the block(+shadow) into bits that are nice in individual Regge limits:

$$
\begin{aligned}
2 \cos (j \theta) & =e^{i j \theta}+e^{-i j \theta} \\
& =w^{j}+w^{-j}
\end{aligned}
$$

That is, we want:

$$
\begin{array}{cc}
F_{j, \Delta}(z, \bar{z})=F_{j, \Delta}^{(+)}+ & F_{j, \Delta}^{(-)} \\
\sim w^{j} & \sim \\
(w \rightarrow 0) & \sim w^{-j} \\
(w \rightarrow \infty)
\end{array}
$$

- tricky because there are 8 basic solutions to conformal Casimirs diff eqs.: (quadratic and quartic)

$$
g_{j, \Delta}^{\text {pure }}(z, \bar{z}) \sim z^{\frac{\Delta-j}{2}} \bar{z}^{\frac{\Delta+j}{2}} \quad(0 \ll z \ll \bar{z} \ll 1)
$$

- Solutions related by symmetries:

$$
j \longleftrightarrow 2-d-j, \quad \Delta \longleftrightarrow d-\Delta, \quad \Delta \longleftrightarrow 1-j
$$

- Only 2 are nice (convergent) in Regge limit:

$$
g_{\Delta+1-d, j+d-1}^{\text {pure }}, \quad g_{1-\Delta, j+d-1}^{\text {pure }} \sim(z \bar{z})^{j / 2}
$$

- So we have 4 parameters and 8 constraints
- The constraints are on different sheets:

(all 8 solutions mix ${ }_{g_{j, \lambda}^{\text {pure }}(z, z)^{\circ}=g_{j, \lambda}^{\text {pure }}(z, z)}\left[1-2 i^{\left.-e^{-i \pi(a n+(a)} \sin \right)} \sin (\pi(\beta / 2+a)) \sin (\pi(\beta / 2+b))\right]$ under continuation:)
$-g_{1-\Delta, 1-j}^{\text {pure }}(z, \bar{z}) 2 \pi i \frac{e^{-i \pi(a+b)} \Gamma(\Delta+j-1) \Gamma(\Delta+j)}{\Gamma\left(\frac{\Delta+j}{2}-a\right) \Gamma\left(\frac{\Delta+j}{2}+a\right) \Gamma\left(\frac{\Delta+j}{2}-b\right) \Gamma\left(\frac{\Delta+j}{2}+b\right)}$.

4 parameters, 8 constraints, fingers crossed...

Result: CFT Froissart-Gribov formula

$$
c(J, \Delta)=c^{t}(J, \Delta)+(-1)^{J} c^{u}(J, \Delta)
$$

$$
\begin{aligned}
& c^{t}(J, \Delta)= \\
& \frac{\kappa_{J+\Delta}}{4} \int_{0}^{1} d z d \bar{z} \mu(z, \bar{z}) G_{\Delta+1-d, J+d-1}(z, \bar{z}) \operatorname{dDisc}[G(z, \bar{z})]
\end{aligned}
$$

Result: CFT Froissart-Gribov formula

$$
\begin{array}{cc}
c(J, \Delta)=\int_{\diamond} & {[\text { Inverse block }] \times[\mathrm{dDisc} G]} \\
\text { s-channel } & \substack{\text { convergent } \\
\text { OPE coefficients }} \\
\text { t-channel sum }
\end{array}
$$

Result: CFT Froissart-Gribov formula

converges for $\mathrm{j}>\mid$ (Regge limit bounds)

A (boring) test: 2D Ising

$$
G(\rho, \bar{\rho})=\left|\frac{1}{\left(1-\rho^{2}\right)^{1 / 4}}\right|^{2}+\left|\frac{\sqrt{\rho}}{\left(1-\rho^{2}\right)^{1 / 4}}\right|^{2}
$$

- Double discontinuity:

$$
\frac{1-\frac{1}{\sqrt{2}}(\sqrt{\rho}+\sqrt{\bar{\rho}})+\sqrt{\rho \bar{\rho}}}{\left(1-\rho^{2}\right)^{1 / 4}\left(1-\bar{\rho}^{2}\right)^{1 / 4}}>0
$$

- Integral against 2d (global) blocks: factorize

$$
\begin{gather*}
c_{j, \Delta}=f_{0}(j+\Delta) f_{0}(j+2-\Delta)-\frac{1}{2} f_{1 / 4}(j+\Delta) f_{0}(j+2-\Delta)+\ldots \\
f_{p}(\alpha)=2^{a-3+2 p} \frac{\Gamma\left(\frac{7}{4}\right) \Gamma\left(p+\frac{\alpha-2}{4}\right)}{\Gamma\left(p+\frac{\alpha+5}{4}\right)}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{\alpha}{2}, p+\frac{\alpha-2}{4} ; \frac{a+1}{2}, p+\frac{\alpha+5}{4} ; 1\right) \tag{B.6}
\end{gather*}
$$

- Residues at all poles do match global OPE!*

$$
C_{j, \Delta}=-K_{j, \Delta} \operatorname{Res}_{\Delta^{\prime}=\Delta} c\left(j, \Delta^{\prime}\right)
$$

$$
\begin{aligned}
& C_{0,1}=\frac{1}{4}, \quad C_{2,2}=\frac{1}{64}, \quad C_{4,4}=\frac{9}{40960}, \quad C_{0,4}=\frac{1}{4096} \\
& C_{4,5}=\frac{1}{65536}, \quad C_{6,6}=\frac{35}{3670016} \quad C_{2,6}=\frac{9}{2621440}, \quad C_{6,7}=\frac{1}{1310720}, \ldots
\end{aligned}
$$

* Including (predicted) spurious poles for $\quad \Delta-j-d=0,1,2 \ldots$

$$
\begin{aligned}
& \frac{(-1)^{m+1} \Gamma\left(1+a+\frac{m}{2}\right) \Gamma\left(1+b+\frac{m}{2}\right)}{m!(m+1)!\Gamma\left(a-\frac{m}{2}\right) \Gamma\left(b-\frac{m}{2}\right)} \times \\
& \quad \times K_{j+1+m, j+d-1} c(j+1+m, j+d-1)
\end{aligned}
$$

**And: never trust Mathematica's Residue on 3F2.

Outline

The aim of this talk will be to present a formula...
I. Context: the conformal bootstrap $\boldsymbol{\checkmark}$
2. An inverse OPE formula:
-Why operators are analytic in spin
-building it up: SO(2),SO(3),SO(2, I)...SO(d,2)
3. Applications:
-operators of large spin
-CFTs dual to gravity: causality\&bulk locality

Large spin operators

- Physical intuition: take two operators and put many derivatives between them:

$$
\mathcal{O}_{\#}=\mathcal{O}_{1} \partial^{\#} \mathcal{O}_{2}
$$

- Should make them 'far' and decoupled:

$$
\Delta_{\#} \approx \Delta_{1}+\Delta_{2}+(\# \text { derivatives }) \quad \text { (as in free theory!) }
$$

- Actually, twist is more useful: $\tau=\Delta-j$

$$
\tau_{[12]_{n}} \approx \tau_{1}+\tau_{2}+2 n
$$

Large spin expansions

large spin in s-channel \leftarrow low twist in t-channel standard story: double-light-cone limit $(z, \bar{z}) \rightarrow(0,1)$
non-analytic behaviour in $(1-\bar{z})$ needs large spin:

$$
\sum_{j} \frac{1}{j^{\alpha}} F_{j}(\bar{z})=(1-\bar{z})^{\alpha / 2}+\text { regular }
$$

\Rightarrow Solve OPE in asymptotic series in I/j
[Komargodski\&Zhiboedov, Fitzpatrick,Kaplan,Poland\&Simmons-Duffin,

Alday\&Bissi\&..., ,Kaviraj,Sen,Sinha\&...,

- New: start instead from Froissart-Gribov formula:

$$
c(j, \Delta) \sim \int_{0}^{1} d z d \bar{z} z^{j-\Delta} \bar{z}^{j+\Delta} F_{j+\Delta}(\bar{z}) \mathrm{dDisc} G(z, \bar{z})
$$

- Recall, OPE data encoded in Δ-poles: $z \rightarrow 0$
if $G(z, \bar{z}) \rightarrow z^{\tau} G_{\tau}(\bar{z})$,
$c(j, \Delta)=\frac{1}{j-\Delta-\tau} \times \int_{0}^{1} d \bar{z} \bar{z}^{j+\Delta} F_{j+\Delta}(\bar{z}) \mathrm{dDisc} G_{\tau}(\bar{z})$
- Large $\mathrm{j}+\Delta$ and low twist pushes to $(0, \mathrm{I})$ corner
- Analytic result for collinear integral of power:

$$
\begin{gather*}
I_{\tau^{\prime}}^{a, b}(\bar{h}) \equiv \int_{0}^{1} \frac{d \bar{z}}{\bar{z}^{2}}(1-\bar{z})^{a+b} \kappa_{\bar{h}} k_{\bar{h}}(\bar{z}) \mathrm{dDisc}\left[\left(\frac{1-\bar{z}}{\bar{z}}\right)^{\frac{\tau^{\prime}}{2}-b}(\bar{z})^{-b}\right]_{(4.7)} \tag{4.7}\\
=\frac{1}{\Gamma\left(-\frac{\tau^{\prime}}{2}-a\right) \Gamma\left(-\frac{\tau^{\prime}}{2}+b\right)} \times \frac{\Gamma(\bar{h}-a) \Gamma(\bar{h}+b)}{\Gamma(2 \bar{h}-1)} \times \frac{\Gamma\left(\bar{h}-\frac{\tau^{\prime}}{2}-1\right)}{\Gamma\left(\bar{h}+\frac{\tau^{\prime}}{2}+1\right)} . \\
\sim 1 / \bar{h}^{\tau^{\prime}} \quad\left(\bar{h}=\frac{j+\Delta}{2}\right)
\end{gather*}
$$

- Earlier results reproduced by: 'expand cross-channel OPE in $\frac{1-\bar{z}}{\bar{z}}$ and integrate termwise using (4.7)'
- Conceptually, no need to expand in I/j
(=why earlier expansions were asymptotic) [Alday\&Zhiboedov'I5

Asymptotic series in 3D Ising

$$
\tau_{[\sigma \sigma]_{0}}(\bar{h})
$$

[Plot from Simmons-Duffin '16; see Alday\&Zhiboedov 'I5]

What's new:

- Asymptotic expansion \Rightarrow convergent sum (no need to expand in $(1-\bar{z}) / \bar{z}$)
- Control over individual spins, not only averages over many spins ('no stick-out')
- Can try to bound errors

AdS/CFT:
 Why dDisc is awesome

In theories with large- N factorization, saturated by single-traces

Leading connected order $\sim \log (1-\bar{z})$

$$
\underset{\substack{\text { single+double } \\ \text { traces }}}{c_{j, \Delta} \sim \int \mathrm{dDisc} G} \underbrace{\text { trace }}_{\text {single }}
$$

Theories with gravity dual have few light single-traces: the graviton (T ${ }^{\mu \nu}$), a few scalars,... up to $\Delta_{\text {gap }}$

Heavy's in cross-channel can be bounded:

s-channel OPE coefficients \sim weighted areas

$$
\begin{gathered}
c\left(j, \frac{d}{2}+i \nu\right) \sim \int_{0}^{1} d(z \bar{z})(z \bar{z})^{j / 2-1} e^{-(\sqrt{z}+\sqrt{z}) \Delta_{\text {gap }}} \times \int d(z / \bar{z})(\ldots) \\
\propto \frac{1}{\left(\Delta_{\text {gap }}^{2}\right)^{j-1}}
\end{gathered}
$$

Area itself is (inverse) stress-tensor two-point function

$$
\Rightarrow\left|c\left(j, \frac{d}{2}+i \nu\right)_{\text {heavy }}\right| \leq \frac{1}{c_{T}} \frac{\#}{\left(\Delta_{\text {gap }}^{2}\right)^{j-2}}
$$

- AdS/CFT expectation: EFT coefficients suppressed by dimension: $\left(\partial^{2 k}\right) \phi^{4}$ down by $1 / \Delta_{\text {gap }}^{2 k}$
- What this shows: down by spin $1 / \Delta_{\text {gap }}^{2(j-2)}$
- Same as 'causality bound' conjectured recently (equivalent to existence of dispersion relation in the bulk) [Maldacena,Simmons-Duffin\&Zhiboedov '15]
- What was known from CFT:

Solutions to crossing symmetry in a large-N CFT with large gap $=$ Witten diagrams

For given light spectrum, solutions are ambiguous by contact interactions

- What we learn: analyticity in spin (good Regge behavior) singles out a unique, 'causal' solution, up to errors:

$$
<1 /\left(\Delta_{\text {gap }}^{2}\right)^{j-2}
$$

- key step toward AdS/CFT from CFT!

(Spin versus dimension)

- Some sporadic few-derivative interactions remain unconstrained
- Consider an AdS interaction with flat-space limit:
stu
- This has spin two in the Regge limit in all channels:

$$
s t u=s t(s+t) \sim s^{2} \equiv s^{j} \quad(s \rightarrow \infty, t \text { fixed })
$$

- All interactions with more derivative, however, must have small coefficients

Conclusion

- Novel formula: (Froissart-Gribov-like)

$$
\underset{\text { s-channel }}{c(j, \Delta) \equiv \int_{0}^{1} d z d \bar{z} g_{\Delta, j} \mathrm{dDisc} G}
$$

- Valid in any unitary CFT ${ }_{D}$. Regge behavior ensures convergence; ounds derivative interactions in AdS
- Opens the way for AdS/CFT beyond gravity
- Outlook:
-Numerical bootstrap: bound errors using convergent I/j expansion?
-Higher points?
\& much more!

Interpretation of Q_{j}

- Legendre polys P_{j} : finite dim representations, with $\mathrm{J}_{\mathrm{z}}=-\mathrm{j} . . \mathrm{j}$:

Ex: $\quad P_{4}(\cos \theta) \propto 35 e^{4 i \theta}+20 e^{2 i \theta}+18+20 e^{-2 i \theta}+35 e^{-4 i \theta}$

- Q_{j} functions associated with infinite-dim highestweight reps:
$Q_{j}(\cosh \eta)=e^{-(j+1) \eta}+\# e^{-(j+3) \eta}+\#^{\prime} e^{-(j+5) \eta}+\ldots$
- $Q_{j}=$ second solution to Legendre diff eq.

