Fluctuations of the gluon distribution at small x : correlation of multiplicity and transverse momentum fluctuations

Adrian Dumitru Baruch College (City Univ. of NY)

Saturation: Recent Developments, New Ideas and Measurements

April 2017
BNL

Observables at small x

average over stochastic small-x color fields:

$$
\left\langle O\left[A^{+}\right]\right\rangle=\frac{1}{Z} \int \mathcal{D} A^{+} W\left[A^{+}\right] O\left[A^{+}\right]
$$

$$
W\left[A^{+}\right]: \text {JIMWLK weight functional }
$$

$$
\begin{aligned}
& \text { In the MV model: } \\
& W\left[A^{+}\right]=e^{-S\left[A^{+}\right]}, \\
& S\left[A^{+}\right]=\int d x^{-} d^{2} x_{\perp} \frac{\operatorname{tr} \nabla_{\perp}^{2} A^{+}\left(x^{-}, x_{\perp}\right) \nabla_{\perp}^{2} A^{+}\left(x^{-}, x_{\perp}\right)}{2 \mu^{2}\left(x^{-}\right)}
\end{aligned}
$$

Examples:

- $O\left[A^{+}\right]=g^{2} \operatorname{tr} A^{+}\left(x_{\perp}\right) A^{+}\left(y_{\perp}\right)$
- $O\left[A^{+}\right]=g^{2} \operatorname{tr} A^{i}\left(x_{\perp}\right) A^{i}\left(y_{\perp}\right)$
- $O\left[A^{+}\right]=\frac{1}{N_{c}} \operatorname{tr} V\left(x_{\perp}\right) V^{\dagger}\left(y_{\perp}\right)$

$$
V\left(x_{\perp}\right)=\mathcal{P} e^{-i g \int d x^{-} A^{+}\left(x^{-}, x_{\perp}\right)}
$$

(cov. gauge) gluon distribution
(L.C. gauge) WW gluon distribution
dipole forw. scatt. amplitude

Idea: integrate out fluctuations which do not affect observable $\mathrm{O}\left[\mathrm{A}^{+}\right]$

\rightarrow obtain effective action / potential for that observable
(we work directly with MV / JIMWLK action w/o introducing "dipole picture")

$$
e^{-V_{\text {eff }}[X(q)]}=\int \mathcal{D} A^{+}(q) W\left[A^{+}(q)\right] \delta\left(X(q)-O\left[A^{+}(q)\right]\right)
$$

$$
\frac{\delta V_{\mathrm{eff}}[X(k)]}{\delta X(q)}=0 \rightarrow X_{s}(q) \equiv\langle X(q)\rangle
$$

(at large Nc; or else do proper Legendre transform)
for $O\left[A^{+}\right]=g^{2} \operatorname{tr}\left|A^{+}(q)\right|^{2}$ in MV model :

$$
\begin{aligned}
V_{\text {eff }}[X(q)] & =\int \frac{d^{2} q}{(2 \pi)^{2}}\left[\frac{q^{4}}{g^{4} \mu^{2}} X(q)-\frac{1}{2} A_{\perp} N_{c}^{2} \log X(q)\right] \\
X_{s}(q) & =\frac{1}{2} N_{c}^{2} A_{\perp} \frac{g^{4} \mu^{2}}{q^{4}} \quad \checkmark \quad \text { (cov. gauge gluon distribution at q>Qs) }
\end{aligned}
$$

same result for non-local Gaussian model by lancu, Itakura \& McLerran (approx. to JIMWLK), provided
at $\mathrm{q}>\mathrm{Q}_{\mathrm{s}}: \quad \mu^{2} \rightarrow \mu_{0}^{2}\left(\frac{q^{2}}{Q_{s}^{2}}\right)^{1-\gamma}$
$\gamma=0.63$, BFKL anom. dim. in presence of absorptive (saturation) boundary (Mueller \& Triantafyllopoulos)

Aside: constrained effective potential introduced originally to compute potential for Polyakov loop in YM at $\mathrm{T}>0$:

$$
\exp (-V \mathcal{V}(\ell))=\int \mathcal{D} A_{\mu} \delta\left(\ell-\frac{1}{N} \operatorname{tr} \overline{\mathbf{L}}\right) \exp \left(-\frac{1}{g^{2}} S(A)\right)
$$

for Higgs:
L. O'Raifeartaigh, A. Wipf and H. Yoneyama: Nucl. Phys. B 271 (1986) 653
for Polyakov loop:
C. Korthals Altes: Nucl. Phys. B 420 (1994) 637
to two loops and general eigenvalues:
A. Dumitru, Y. Guo and C. P. Korthals Altes: Phys. Rev. D 89, 016009 (2014)

Fluctuations:

$$
\text { instead of } \begin{aligned}
& X(q)=X_{s}(q)+\delta X(q) \\
& \begin{aligned}
\Delta V_{\text {eff }}[\delta X(q)] & =\frac{1}{2} \int \frac{d^{2} l}{(2 \pi)^{2}} \frac{d^{2} k}{(2 \pi)^{2}} \delta X(l)\left\{\frac{\delta}{\delta X(l)} \frac{\delta}{\delta X(k)} V_{\text {eff }}[\delta X(q)]\right\} \delta X(k) \\
& =\frac{1}{2} \int \frac{d^{2} q}{(2 \pi)^{2}} \frac{\delta X(q)^{2}}{X_{s}(q)^{2}} \frac{1}{2} N_{c}^{2} A_{\perp} \\
Z_{1} \text { loop } & =\int \mathcal{D} \delta X(q) e^{-V_{\text {eff }}[\delta X(q)]}=e^{-\frac{1}{2} \operatorname{tr} \log \left(\frac{1}{2} \frac{N_{c}^{2} A_{\perp}}{X_{s}(q)^{2}}\right)}
\end{aligned}
\end{aligned}
$$

let's go with $X(q)=X_{s}(q) \eta(q) \quad$ (canonical dim. of η is zero)

$$
\begin{aligned}
\Delta V_{\mathrm{eff}}[\eta(q)] & \equiv V_{\mathrm{eff}}[\eta(q)]-V_{\mathrm{eff}}[\eta(q)=1] \\
& =\frac{1}{2} N_{c}^{2} A_{\perp} \int \frac{d^{2} q}{(2 \pi)^{2}}[\eta(q)-1-\log \eta(q)]
\end{aligned}
$$

- field redefinition $\varphi=\log \eta$ yields Liouville action/potential (in q space!) with $R<0$

Fluctuations: correlation of gluon number and transv. momentum

$$
\Delta N_{g}[\eta(q)]=\int \frac{d^{2} q}{(2 \pi)^{2}} q^{2} X_{s}(q)[\eta(q)-1] \quad \Delta \overline{q^{2}}[\eta(q)]=\frac{\Delta N_{g}[\eta(q)]}{\int \frac{d^{2} q}{(2 \pi)^{2}} X_{s}(q) \eta(q)}
$$

Ansatz: $\quad \eta\left(q>Q_{s}\right)=1+\eta_{0}\left(\frac{Q_{s}^{2}}{q^{2}}\right)^{a} \Theta\left(Q^{2}-q^{2}\right)$

- a > 0: fluctuation "know" about scale Q_{s}
- a $\rightarrow 0$: scale invariant fluctuation

for small amplitude fluctuations
ΔN_{g} increases with $\Delta \overline{q^{2}}$
maximize $\Delta N_{g}\left(\right.$ and $\left.\Delta \overline{q^{2}}\right)$, minimize "penalty" $\Delta S[\eta(q)] \equiv \Delta V_{\text {eff }}[\eta(q)]$
\longrightarrow MV model: $\quad 0<a<1$
(because for a=0: $\Delta N_{g} \sim \log Q^{2}, \Delta S \sim Q^{2}$)
IIM model (anom. dim.) $\quad a \approx 0$
\rightarrow Mueller picture where Qs corresponds to an absorptive boundary

$$
\eta_{0} \sim \Delta S \frac{\left(Q^{2} / Q_{s}^{2}\right)^{a}}{N_{c}^{2} A_{\perp} Q^{2}} \quad\left(\Delta \mathrm{~S} \sim \log \mathrm{p}^{-1} \text { where } \mathrm{p} \text { is probability of fluctuation }\right)
$$

MC simulation:

- MV: generate random configurations of $A^{+}\left(x^{-}, x_{\perp}\right)$ according to $S_{M V}\left[A^{+}\right]$
- JIMWLK: stochastic evolution (at fixed α_{s}) of associated Wilson line to $\alpha_{s} Y=1$

$$
\begin{aligned}
& X(q)=\int d^{2} b \int d^{2} r e^{-i q r} \operatorname{tr}\left[V_{Y}\left(b-\frac{r}{2}\right) V_{Y}^{\dagger}\left(b+\frac{r}{2}\right)-1\right] \quad \text { (integrated over entire 2d lattice) } \\
& X_{R}(q, b)=\int d^{2} x \int d^{2} y e^{-i q(y-x)} e^{-\frac{(b-x)^{2}}{2 R^{2}}} e^{-\frac{(b-y)^{2}}{2 R^{2}}} \operatorname{tr}\left[V_{Y}(x) V_{Y}^{\dagger}(y)-1\right] \\
& \text { ("local" distribution at b; } \\
& \text { similar to "smeared" Wigner distr.) } \\
& R=\frac{2}{Q_{s}}
\end{aligned}
$$

Correlation of transv. momentum and multiplicity fluctuations

- $\Delta N_{g} \sim 10-100$ for $A=0.1 \mathrm{fm}^{2}, Q_{s}{ }^{2}=(1-2.5 \mathrm{GeV})^{2}$
- tight correlation (\sim single curve, few outliers)
- JIMWLK shows correlations in b-space
- strong increase of Δq^{2} with ΔN_{g} in small area "patches"

Spectral shape of high multiplicity fluctuations

 (canonical dimension of $\eta(q)$ is 0)

Spectral shape of low multiplicity fluctuations

$\mathrm{V}_{\text {eff }}[n]$ extracted from MC (histogram of fluctuations etc)

- linear minus log indeed appears to work \checkmark
- prefactor (curvature)
$\sim_{c}{ }^{2} A_{\perp} Q_{s}{ }^{2}$,
effective area of fluct. appears to decrease with Y (i.e. $A_{\perp} Q_{s}{ }^{2}$ decreases with Y)

WW (light cone gauge) gluon distribution $\quad g^{2} \operatorname{tr} A^{i}(q) A^{j}(-q)$

at order $\left(\mathrm{gA}^{+}\right)^{4}$

$$
\begin{aligned}
& \delta^{i j} g^{2} \operatorname{tr} A^{i}(q) A^{j}(-q)=\frac{1}{2} q^{2} g^{2} A^{+a}(q) A^{+a}(-q) \\
&-\frac{g^{4}}{8} f^{a b e} f^{c d e}\left(\delta^{l m}-\frac{q^{l} q^{m}}{q^{2}}\right) \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{d^{2} p}{(2 \pi)^{2}} k^{l} p^{m} A^{+a}(q-k) A^{+b}(k) A^{+c}(-q-p) A^{+d}(p) \\
&\left(2 \frac{q^{i} q^{j}}{q^{2}}-\delta^{i j}\right) g^{2} \operatorname{tr} A^{i}(q) A^{j}(-q)=\frac{1}{2} q^{2} g^{2} A^{+a}(q) A^{+a}(-q) \\
&+\frac{g^{4}}{8} f^{a b e} f^{c d e}\left(\delta^{l m}-\frac{q^{l} q^{m}}{q^{2}}\right) \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{d^{2} p}{(2 \pi)^{2}} k^{l} p^{m} A^{+a}(q-k) A^{+b}(k) A^{+c}(-q-p) A^{+d}(p)
\end{aligned}
$$

* not "diagonal" in q, analytic calculation of $\mathrm{V}_{\text {eff }}[\mathrm{X}(\mathrm{q})]$ more complicated
* numerical MC computation is no problem though, (to all orders in gA+: $A^{i}=(i / g) \cup\left[A^{+}\right] \partial^{i} \cup^{\dagger}\left[A^{+}\right]$)

Summary

- effective potential for observable $\mathrm{O}\left[\mathrm{A}^{+}\right]$: integrate out "orthogonal" fluctuations of A^{+}from MV / JIMWLK action
- for $\mathrm{O}\left[\mathrm{A}^{+}\right]=\mathrm{g}^{2} \operatorname{tr}\left|\mathrm{~A}^{+}(\mathrm{q})\right|^{2}$ we obtained $\mathrm{V}_{\text {eff }}[\eta]$ analytically \& numerically: linear minus \log $\eta(q) \equiv X(q) / X_{s}(q)$ describes fluctuations of cov. gauge gluon distribution
- tight correlation of gluon number and transverse momentum fluctuations
- strong increase of Δq^{2} with ΔN_{g}, especially in small transv. area
- evolution modifies the spectrum of fluctuations:

MV: gluon pile-up near Qs;
JIMWLK: scale invariant fluctuation $\eta(q) \quad$ (for fixed coupl. kernel !) above absorptive boundary

Backup Slides

MC results for WW (light cone gauge) gluon distribution

high multiplicity configurations via

$$
\begin{aligned}
& \Delta N_{g}[\eta(q)]=\int \frac{d^{2} q}{(2 \pi)^{2}}\left[X(q)-X_{s}(q)\right] \\
& \leftarrow X(\mathrm{q})
\end{aligned}
$$

Resummation of boost-invariant quantum fluctuations (JIMWLK):

classical ensemble at $Y=\log x_{0} / x=0$:
$P[\rho] \sim e^{-S_{\mathrm{cl}}[\rho]}, \quad S_{\mathrm{MV}}=\int d^{2} x_{\perp} \frac{1}{2 \mu^{2}} \rho^{a} \rho^{a}, \quad V\left(x_{\perp}\right)=\mathcal{P} \exp i g^{2} \int d x^{-} \frac{1}{\nabla_{\perp}^{2}} \rho\left(x_{\perp}\right)$
quantum evolution to $\mathrm{Y}>0$: random walk in space of Wilson lines

$$
\begin{aligned}
& \partial_{Y} V\left(x_{\perp}\right)=V\left(x_{\perp}\right) i t^{a}\left\{\int d^{2} y_{\perp} \varepsilon_{k}^{a b}\left(x_{\perp}, y_{\perp}\right) \xi_{k}^{b}\left(y_{\perp}\right)+\sigma^{a}\left(x_{\perp}\right)\right\} \\
& \varepsilon_{k}^{a b}=\left(\frac{\alpha_{s}}{\pi}\right)^{1 / 2} \frac{\left(x_{\perp}-y_{\perp}\right)_{k}}{\left(x_{\perp}-y_{\perp}\right)^{2}}\left[1-U^{\dagger}\left(x_{\perp}\right) U\left(y_{\perp}\right)\right]^{a b} \\
& t^{b} U_{a b}\left(x_{\perp}\right)=\operatorname{tr}\left(V\left(x_{\perp}\right) t^{a} V^{\dagger}\left(x_{\perp}\right)\right) \\
& \left\langle\xi_{i}^{a}\left(x_{\perp}\right) \xi_{j}^{b}\left(y_{\perp}\right)\right\rangle=\delta^{a b} \delta_{i j} \delta^{(2)}\left(x_{\perp}-y_{\perp}\right) \quad \quad \text { (Gaussian white noise) } \\
& \sigma^{a}\left(x_{\perp}\right)=-i \frac{\alpha_{\mathrm{s}}}{2 \pi^{2}} \int d^{2} z_{\perp} \frac{1}{\left(x_{\perp}-z_{\perp}\right)^{2}} \operatorname{tr}\left(T^{a} U^{\dagger}\left(x_{\perp}\right) U\left(z_{\perp}\right)\right) \quad \text { (drag term) }
\end{aligned}
$$

Increase of <pT> in $p+p, p+P b$ collisions with event multiplicity

$<p_{T}>$ vs. $N_{c h}$:
ATLAS data vs. models

- PYTHIA8 virtually perfect
- DIPSY qualitatively ok
- can one relate this to B-JIMWLK W[A+] ?

Charged $\left\langle p_{\perp}\right\rangle$ vs. N_{ch} at 7 TeV , track $p_{\perp}>500 \mathrm{MeV}$, for $N_{\mathrm{ch}} \geq 1$

