Particle Production in CGC

Kenji Fukushima
 The University of Tokyo

Based on works with
S. Benic, O. Garcia-Montero, R. Venugopalan N. Tanji

- Saturation: Recent developments, new ideas and Measurements -

Talk Plan

Photons in $\boldsymbol{p} \boldsymbol{A}$ at high energies
\square Leading-order - Bremsstrahlung (quarks)
Gelis-Jalilian-Marian hep-ph/0205037
\square Next-leading-order - Annihilation/Bremsstrahlung (gluons) Benic-Fukushima arXiv:1602.01989
Benic-Fukushima-Garcia-Montero-Venugopalan arXiv:1609.09424
Semi-CGC regime where the latter is overwhelming!
Quarks in $A A$ at small proper time
\square Proper-time expansion (glasma)
Fries-Kapusta-Li nucl-th/0604054 / arXiv:1602.09060
Fukushima-Fujii-Hidaka arXiv:0811.0437
\square Quark sector — quark production / chirality production Gelis-Tanji arXiv:1506.03327 / Fukushima-Tanji ?????

Photon Production

Compton Scattering

$$
\propto \alpha_{e} \alpha_{s} n_{q}\left(1-n_{q}\right) n_{g}
$$

$$
(q g \rightarrow q \gamma)
$$

Annihilation

$\propto \alpha_{e} \alpha_{s} n_{q} n_{\bar{q}}\left(1+n_{g}\right)$

$$
(q \bar{q} \rightarrow g \gamma)
$$

Photon Production with CGC

Compton Scattering

$\propto \alpha_{e} \alpha_{s} n_{q}\left(1-n_{q}\right) \alpha_{s}^{-1}$
$\sim \alpha_{e} n_{q}\left(1-n_{q}\right)$

Annihilation

$\propto \alpha_{e} \alpha_{s} n_{q} n_{\bar{q}} \alpha_{s}^{-1}$
$\sim \alpha_{e} n_{q} n_{\bar{q}}$

Photon Production with CGC

Gauge choice: $\quad A \sim \rho_{\mathrm{A}} \sim \delta\left(x^{+}\right) \quad$ Gelis-Mehtar-Tani (2006)

$$
\begin{aligned}
& U \sim 1+i g A+\frac{1}{2}(i g A)^{2}+\cdots
\end{aligned}
$$

Leading-order Process

Gelis-Jalilian-Marian (2002)

$\sim \alpha_{e} n_{q} n_{\bar{q}}\left\langle U U^{\dagger} U U^{\dagger}\right\rangle$
Suppressed by quark distribution

$$
\sim \alpha_{e} n_{q} \underbrace{\left\langle U U^{\dagger}\right\rangle}_{\text {Multiple Scattering with CGC }}
$$

Leading-order Process

$$
\begin{array}{r}
\frac{1}{A_{\perp}} \frac{d \sigma^{q \rightarrow q \gamma}}{d^{2} \boldsymbol{k}_{\perp}}=\frac{2 \alpha_{e}}{(2 \pi)^{4} \boldsymbol{k}_{\perp}^{2}} \int_{0}^{1} d z \frac{1+(1-z)^{2}}{z} \int d^{2} \boldsymbol{l}_{\perp} \frac{\boldsymbol{l}_{\perp}^{2} C\left(\boldsymbol{l}_{\perp}\right)}{\left(\boldsymbol{l}_{\perp}-\boldsymbol{k}_{\perp} / z\right)^{2}} \\
C\left(\boldsymbol{l}_{\perp}\right) \equiv \int d^{2} \boldsymbol{x}_{\perp} e^{i \boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}} e^{-B_{2}\left(\boldsymbol{x}_{\perp}\right)}=\int d^{2} \boldsymbol{x}_{\perp} e^{i \boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}}\left\langle U(0) U^{\dagger}\left(\boldsymbol{x}_{\perp}\right)\right\rangle_{\rho} \\
B_{2}\left(\boldsymbol{x}_{\perp}-\boldsymbol{y}_{\perp}\right) \equiv Q_{s}^{2} \int d^{2} \boldsymbol{z}_{\perp}\left[G_{0}\left(\boldsymbol{x}_{\perp}-\boldsymbol{z}_{\perp}\right)-G_{0}\left(\boldsymbol{y}_{\perp}-\boldsymbol{z}_{\perp}\right)\right]^{2}
\end{array}
$$

Gelis-Jalilian-Marian (2002)

"Higher"-order Processes

$$
\begin{aligned}
& \sim \alpha_{e} \delta n_{q}\left\langle U U^{\dagger}\right\rangle \quad \text { (evolution) } \\
& \sim \alpha_{e}\left\langle\left(g \rho_{p}\right)^{2}\right\rangle\left\langle U U^{\dagger} U U^{\dagger}\right\rangle
\end{aligned}
$$

"Higher"-order Processes

LO: $\sim \alpha_{e} n_{q}\left\langle U U^{\dagger}\right\rangle$
NLO: $\sim \alpha_{e}\left\langle\left(g \rho_{p}\right)^{2}\right\rangle\left\langle U U^{\dagger} U U^{\dagger}\right\rangle$

$$
\left(g \rho_{p}\right)^{2}<g \rho_{p} \sim n_{q}
$$

NLO is overwhelming but the pA expansion still works
Systematic calculations feasible
Not small corrections but dominant at high energies pA photon (hopefully) coming very soon

Annihilation Diagram

 Benic-Fukushima (2016)

$$
\begin{aligned}
& \mathcal{M}_{\lambda}(\boldsymbol{k}) \equiv\langle\boldsymbol{k}, \lambda \mid \Omega\rangle=e g \int d^{4} x d^{4} y e^{i k \cdot x} \operatorname{Tr}[\notin(\boldsymbol{k}, \lambda) \\
& \text { Known } \\
&\left.\left.\sim S_{F} \gamma^{+} U S_{F}, y\right) \mathcal{A}_{(1)}(y) S(y, x)\right]
\end{aligned}
$$

Annihilation Diagram

Benic-Fukushima (2016)

Ward identity:

$$
\begin{aligned}
\mathcal{M}_{\lambda}(\boldsymbol{k})= & \frac{e g^{2}}{4 \pi^{3}} \int_{0}^{1} d x \int d^{2} \boldsymbol{u}_{\perp} d^{2} \boldsymbol{v}_{\perp} \int \frac{d^{2} \boldsymbol{p}_{\perp}}{(2 \pi)^{2}} e^{-i\left(\boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp}\right) \cdot\left[\boldsymbol{v}_{\perp}+a(x) \boldsymbol{u}_{\perp}\right]} \\
& \times \frac{\rho_{p}^{a}\left(\boldsymbol{p}_{\perp}\right)}{p_{\perp}^{2}} \operatorname{Tr}_{c}\left[U\left(\boldsymbol{v}_{\perp}+\frac{\boldsymbol{u}_{\perp}}{2}\right) T_{F}^{a} U^{\dagger}\left(\boldsymbol{v}_{\perp}-\frac{\boldsymbol{u}_{\perp}}{2}\right)\right] \\
& \times\left[\hat{u}_{\lambda} p_{\perp} \Psi_{1}\left(\boldsymbol{p}_{\perp}, \boldsymbol{u}_{\perp}, x\right)+p_{\lambda} \Psi_{2}\left(\boldsymbol{p}_{\perp}, \boldsymbol{u}_{\perp}, x\right)\right]
\end{aligned}
$$

Looks complicated but the structure is intuitive

$$
\begin{array}{rlrl}
\Psi_{1}\left(\boldsymbol{p}_{\perp}, \boldsymbol{u}_{\perp}, x\right) \equiv & -4 i a(x) b(x) p_{\perp} K_{0}\left(m_{p}(x) u_{\perp}\right) m K_{1}\left(m u_{\perp}\right) & & a(x) \equiv x-\frac{1}{2} \\
& +4 b(x) \hat{\boldsymbol{p}}_{\perp} \cdot \hat{\boldsymbol{u}}_{\perp} m_{p}(x) K_{1}\left(m_{p}(x) u_{\perp}\right) m K_{1}\left(m u_{\perp}\right) & & b(x) \equiv x(1-x) \\
\Psi_{2}\left(\boldsymbol{p}_{\perp}, \boldsymbol{u}_{\perp}, x\right) \equiv & m K_{1}\left(m u_{\perp}\right) m_{p}(x) K_{1}\left(m_{p}(x) u_{\perp}\right) & & m_{p}^{2}(x) \equiv m^{2}+b(x) p_{\perp}^{2} \\
& +m^{2} K_{0}\left(m u_{\perp}\right) K_{0}\left(m_{p}(x) u_{\perp}\right) . &
\end{array}
$$

Annihilation Diagram

 Benic-Fukushima (2016)$S\left(\boldsymbol{y}_{\perp}, \boldsymbol{z}_{\perp}, \boldsymbol{y}_{\perp}^{\prime}, \boldsymbol{z}_{\perp}^{\prime}\right) \equiv \frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c}\left[U\left(\boldsymbol{y}_{\perp}\right) T_{F}^{a} U^{\dagger}\left(\boldsymbol{z}_{\perp}\right)\right] \operatorname{Tr}_{c}\left[U\left(\boldsymbol{z}_{\perp}^{\prime}\right) T_{F}^{a} U^{\dagger}\left(\boldsymbol{y}_{\perp}^{\prime}\right)\right]\right\rangle$
Master formula
Fukushima-Hidaka arXiv:0704.2806

$$
\begin{gathered}
\left\langle U\left(\boldsymbol{x}_{1 \perp}\right)_{\beta_{1} \alpha_{1}} U\left(\boldsymbol{x}_{2 \perp}\right)_{\beta_{2} \alpha_{2}} \cdots U\left(\boldsymbol{x}_{n \perp}\right)_{\beta_{n} \alpha_{n}}\right\rangle=\exp \left[-\left(H_{0}+V\right)\right]_{\beta_{1} \cdots \beta_{n} ; \alpha_{1} \cdots \alpha_{n}} \\
H_{0}=Q_{\mathrm{s}}^{2} \frac{2 N_{\mathrm{c}}}{N_{\mathrm{c}}^{2}-1}\left(\sum_{k=1}^{n} t_{k}^{a}\right)^{2} L(0,0) \\
V=-Q_{\mathrm{s}}^{2} \frac{2 N_{\mathrm{c}}}{N_{\mathrm{c}}^{2}-1} \sum_{i>j} t_{i}^{a} t_{j}^{a} \Gamma\left(\boldsymbol{x}_{i \perp}, \boldsymbol{x}_{j \perp}\right)
\end{gathered}
$$

Annihilation Diagram

Benic-Fukushima (2016)

$S\left(\boldsymbol{y}_{\perp}, \boldsymbol{z}_{\perp}, \boldsymbol{y}_{\perp}^{\prime}, \boldsymbol{z}_{\perp}^{\prime}\right) \equiv \frac{1}{N_{c}}\left\langle\operatorname{Tr}_{c}\left[U\left(\boldsymbol{y}_{\perp}\right) T_{F}^{a} U^{\dagger}\left(\boldsymbol{z}_{\perp}\right)\right] \operatorname{Tr}_{c}\left[U\left(\boldsymbol{z}_{\perp}^{\prime}\right) T_{F}^{a} U^{\dagger}\left(\boldsymbol{y}_{\perp}^{\prime}\right)\right]\right\rangle$
Color average in MV $\quad \frac{1}{N_{c}} \frac{\left(N_{c}^{2}-1\right)(\beta-\alpha)}{\sqrt{N_{c}^{2}(\alpha-\gamma)^{2}-4(\alpha-\beta)(\beta-\gamma)}}$

$$
\begin{aligned}
& \times \exp \left[-\frac{2 \beta+\left(N_{c}^{2}-2\right)(\alpha+\gamma)}{N_{c}^{2}-1}\right] \\
& \times \sinh \left[\frac{N_{c}}{N_{c}^{2}-1} \sqrt{N_{c}^{2}(\alpha-\gamma)^{2}-4(\alpha-\beta)(\beta-\gamma)}\right]
\end{aligned}
$$

$\alpha, \beta, \gamma:$ combinations of $\frac{1}{2 \pi} \frac{Q_{s}^{2}}{\Lambda_{\mathrm{QCD}}^{2}}\left[1-x_{\perp} \Lambda_{\mathrm{QCD}} K_{1}\left(x_{\perp} \Lambda_{\mathrm{QCD}}\right)\right]$

Annihilation Diagram

Benic-Fukushima (2016)

Caveat

Caveat

Loops vanish for u, d, s quarks
 $$
q_{u}+q_{d}+q_{s}=0
$$

Bremsstrahlung Diagram

 Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

Bremsstrahlung Diagram

 Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

$$
\sim U, U^{\dagger}
$$

Bremsstrahlung Diagram

 Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

$$
\sim U, U^{\dagger}
$$

Bremsstrahlung Diagram

Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

$$
\begin{aligned}
\mathcal{M}^{\mu}\left(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}_{\gamma}\right)=- & q_{f} e g^{2} \int_{\boldsymbol{k}_{\perp}, \boldsymbol{k}_{1 \perp}} \int_{\boldsymbol{x}_{\perp} \boldsymbol{y}_{\perp}} \frac{\rho_{p}^{a}\left(\boldsymbol{k}_{1 \perp}\right)}{\boldsymbol{k}_{1 \perp}^{2}} \mathrm{e}^{\mathrm{i} \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}+\mathrm{i}\left(\boldsymbol{P}_{\perp}-\boldsymbol{k}_{\perp}-\boldsymbol{k}_{1 \perp}\right) \cdot \boldsymbol{y}_{\perp}} \\
& \times \bar{u}(\boldsymbol{q})\left\{T_{g}^{\mu}\left(\boldsymbol{k}_{1 \perp}\right) U\left(\boldsymbol{x}_{\perp}\right)^{b a} t^{b}+T_{q \bar{q}}^{\mu}\left(\boldsymbol{k}_{\perp}, \boldsymbol{k}_{1 \perp}\right) \tilde{U}\left(\boldsymbol{x}_{\perp}\right) t^{a} \tilde{U}^{\dagger}\left(\boldsymbol{y}_{\perp}\right)\right\} v(\boldsymbol{p})
\end{aligned}
$$

Structure is simple but the full expression is...

 Necessary conditions for correctness\checkmark Gauge invariance (Coulomb/Light-cone)
Ward identity: $k_{\gamma \mu} \mathcal{M}^{\mu}\left(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}_{\gamma}\right)=0$
satisfied separately for T_{g} and $T_{q q}$
\checkmark Leading-twist (perturbative)
\checkmark Soft-photon limit (Low-Burnett-Kroll theorem)

Bremsstrahlung Diagram

Parametric form of the final expression

$$
\begin{aligned}
\frac{\mathrm{d} \sigma^{\gamma}}{\mathrm{d}^{2} \boldsymbol{k}_{\gamma \perp} \mathrm{d} \eta_{k_{\gamma}}} & =\frac{\alpha_{e} \alpha_{S}^{2} q_{f}^{2}}{16 \pi^{4} C_{F}} \int_{0}^{\infty} \frac{\mathrm{d} q^{+}}{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \int_{\boldsymbol{k}_{1 \perp} \boldsymbol{k}_{2 \perp} \boldsymbol{q}_{\perp} \boldsymbol{p}_{\perp}}(2 \pi)^{2} \delta^{(2)}\left(\boldsymbol{P}_{\perp}-\boldsymbol{k}_{1 \perp}-\boldsymbol{k}_{2 \perp}\right) \frac{\varphi_{p}\left(\boldsymbol{k}_{1 \perp}\right)}{\boldsymbol{k}_{1 \perp}^{2} \boldsymbol{k}_{2 \perp}^{2}} \\
& \times\left\{\tau_{g, g}\left(\boldsymbol{k}_{1 \perp} ; \boldsymbol{k}_{1 \perp}\right) \phi_{A}^{g, g}\left(\boldsymbol{k}_{2 \perp}\right)+\int_{\boldsymbol{k}_{\perp}} 2 \operatorname{Re}\left[\tau_{g, q \bar{q}}\left(\boldsymbol{k}_{1 \perp} ; \boldsymbol{k}_{\perp}, \boldsymbol{k}_{1 \perp}\right)\right] \phi_{A}^{q \bar{q}, g}\left(\boldsymbol{k}_{\perp}, \boldsymbol{k}_{2 \perp}-\boldsymbol{k}_{\perp} ; \boldsymbol{k}_{2 \perp}\right)\right. \\
& \left.+\int_{\boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp}^{\prime}} \tau_{q \bar{q}, q \bar{q}}\left(\boldsymbol{k}_{\perp}, \boldsymbol{k}_{1 \perp} ; \boldsymbol{k}_{\perp}^{\prime}, \boldsymbol{k}_{1 \perp}\right) \phi_{A}^{q \bar{q}, q \bar{q}}\left(\boldsymbol{k}_{\perp}, \boldsymbol{k}_{2 \perp}-\boldsymbol{k}_{\perp} ; \boldsymbol{k}_{\perp}^{\prime}, \boldsymbol{k}_{2 \perp}-\boldsymbol{k}_{\perp}^{\prime}\right)\right\}
\end{aligned}
$$

Leading twist $\rightarrow \boldsymbol{k}_{\boldsymbol{t}}$-factorized form

$$
\frac{\mathrm{d} \sigma^{\gamma}}{\mathrm{d}^{6} K_{\perp} \mathrm{d}^{3} \eta_{K}}=\frac{\alpha_{e} \alpha_{S}^{2} q_{f}^{2}}{256 \pi^{8} N_{\mathrm{c}}\left(N_{c}^{2}-1\right)} \int_{\boldsymbol{k}_{1 \perp} \boldsymbol{k}_{2 \perp}}(2 \pi)^{2} \delta^{(2)}\left(\boldsymbol{P}_{\perp}-\boldsymbol{k}_{1 \perp}-\boldsymbol{k}_{2 \perp}\right) \frac{\varphi_{p}\left(Y_{p}, \boldsymbol{k}_{1 \perp}\right) \varphi_{A}\left(Y_{A}, \boldsymbol{k}_{2 \perp}\right)}{\boldsymbol{k}_{1 \perp}^{2} \boldsymbol{k}_{2 \perp}^{2}} \Theta\left(\boldsymbol{k}_{1 \perp}, \boldsymbol{k}_{2 \perp}\right)
$$

Bremsstrahlung Diagram

Benic-Fukushima-Garcia-Montero-Venugopalan (2016)
${ }^{0}$ Numerical integrations have been done (S. Benic)

- "Enhancement" with full Wilson lines as compared to LT by a factor 2-4? Consistent with $q q$-bar calculations
- Checking all consistencies (with intuitions)

```
\((\mathrm{GeV})\)
```

10^{1}

- Theory predictions will be made very soon...

Bremsstrahlung Diagram

 Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

Preliminary

ratio of pair Xsec, exact/fact, $\mathrm{Q}_{\mathrm{S}}{ }^{2}=2 \mathrm{GeV}^{2}, \mathrm{~m}=1.5 \mathrm{GeV}$

Fujii-Gelis-Venugopalan (2006)

Quarks in $A A$

Analytically calculable up to $\tau=\mathbf{0}^{+}$

Initial condition for the gluon sector

$$
\begin{aligned}
& A_{i(0)}=\alpha_{i}^{(1)}+\alpha_{i}^{(2)}, \quad A_{\eta(0)}=0 \\
& E_{(0)}^{i}=0, \quad E_{(0)}^{\eta}=i g\left[\alpha_{i}^{(1)}, \alpha_{i}^{(2)}\right]
\end{aligned}
$$

Kovner-McLerran-Weigert (1995)
What do we know about quarks on CGC?
Initial condition for the quark sector How μ_{5} distributes (anomalous hydro)?

Quarks in AA

Gelis-Kajantie-Lappi (2005)

$$
\begin{aligned}
& M_{\tau}(p, q) \equiv \int \frac{\tau \mathrm{d} z \mathrm{~d}^{2} \mathbf{x}_{T}}{\sqrt{\tau^{2}+z^{2}}} \phi_{\mathbf{p}}^{\dagger}(\tau, \mathbf{x}) \gamma^{0} \gamma^{\tau} \psi_{\mathbf{q}}(\tau, \mathbf{x}) \\
& \frac{d N}{d y}=\int \frac{\mathrm{d} y_{p} \mathrm{~d}^{2} \mathbf{p}_{T}}{2(2 \pi)^{3}} \frac{\mathrm{~d} y_{q} \mathrm{~d}^{2} \mathbf{q}_{T}}{2(2 \pi)^{3}} \delta\left(y-y_{p}\right)\left|M_{\tau}(p, q)\right|^{2}
\end{aligned}
$$

Amplitude from anti-particles to particles

$$
\begin{aligned}
& \psi_{\mathbf{q}}(t \rightarrow-\infty, \mathbf{x})=e^{i q \cdot x} v(q) \\
& \phi_{\mathbf{p}}(x)=e^{-i p \cdot x} u(p)
\end{aligned}
$$

Quarks in AA

A substantial portion of particle production at $\tau=\mathbf{0}^{+}$?
If this is true, and if the glasma is true (color fluxtubes), chirality fluctuations (local parity violation) at $\tau=\mathbf{0}^{+}$?

Fukushima-Kharzeev-Warringa (2009)

Quarks in AA

A substantial portion of particle production at $\tau=\mathbf{0}^{+}$?
If this is true, and if the glasma is true (color fluxtubes), chirality fluctuations (local parity violation) at $\tau=\mathbf{0}^{+}$?

The answer is negative Chirality $\sim \sqrt{\tau}$ at most

Fukushima-Tanji (coming soon)

Fukushima-Kharzeev-Warringa (2009)

Quarks in $A A$

Gelis-Tanji (2015)

Anti-particle mode functions

$$
\begin{aligned}
& \widetilde{\psi}_{\boldsymbol{k}_{\perp}}^{-}(\tau) \\
& \times\left[e ^ { + \pi \nu / 2 } (\frac { M _ { \boldsymbol { p } } ^ { 2 } \tau } { 2 M _ { \boldsymbol { k } } }) ^ { i \nu } \Gamma \left(-i \nu+\frac{e^{i \pi / 4}}{\sqrt{M_{\boldsymbol{k}}}} \int \frac{d^{2} \boldsymbol{p}_{\perp}}{(2 \pi)^{2}} \frac{e^{i \boldsymbol{p}_{\perp} \cdot \boldsymbol{x}_{\perp}}}{M_{\boldsymbol{p}}}\right.\right. \\
& \left.\quad+\boldsymbol{x}_{\perp}\right) U_{2}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right) \gamma^{+} \\
& \quad \times\left(p^{-\pi \nu / 2}\left(\frac{M_{\boldsymbol{p}}^{2} \tau}{2 \gamma_{\boldsymbol{k}}}\right)^{-i \nu} \Gamma\left(i \nu+\frac{1}{2}\right) U_{1}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) U_{1}\left(\boldsymbol{k}_{\perp}, y_{k}=0\right)\right.
\end{aligned}
$$

Quarks in AA

Gelis-Tanji (2015)

Anti-particle mode functions

$$
\begin{aligned}
& \widetilde{\psi}_{\boldsymbol{k}_{\perp} \nu s a}^{-}\left(\tau \rightarrow 0^{+}\right)=-\frac{e^{i \pi / 4}}{\sqrt{M_{\boldsymbol{k}}}} \int \frac{d^{2} \boldsymbol{p}_{\perp}}{(2 \pi)^{2}} \frac{e^{i \boldsymbol{p}_{\perp} \cdot \boldsymbol{x}_{\perp}}}{M_{\boldsymbol{p}}} \\
& \times[e^{\pi \nu / 2}\left(\frac{M_{\boldsymbol{p}}^{2} \tau}{2 M_{\boldsymbol{k}}}\right)^{i \nu} \Gamma(-i \nu+\frac{1}{2} \underbrace{U_{2}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) U_{2}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right) \gamma^{+}}_{2} \\
& \quad+e^{-\pi \nu / 2}\left(\frac{M_{\boldsymbol{p}}^{2} \tau}{2 M_{\boldsymbol{k}}}\right)^{-i \nu} \Gamma(i \nu+\frac{1}{2} \underbrace{U_{1}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) U_{1}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right)}_{1} \gamma^{-}] \\
& \quad \times\left(p^{i} \gamma^{i}+m\right) v_{s}\left(\boldsymbol{k}_{\perp}, y_{k}=0\right)
\end{aligned}
$$

Quarks in AA

$$
\begin{aligned}
& \widetilde{\psi}_{\boldsymbol{k}_{\perp} \nu s a}^{-}\left(\tau \rightarrow 0^{+}\right)=-\frac{e^{i \pi / 4}}{\sqrt{M_{\boldsymbol{k}}}} \int \frac{d^{2} \boldsymbol{p}_{\perp}}{(2 \pi)^{2}} \frac{e^{i \boldsymbol{p}_{\perp} \cdot \boldsymbol{x}_{\perp}}}{M_{\boldsymbol{p}}} \\
& \times[e^{\pi \nu / 2}\left(\frac{M_{\boldsymbol{p}}^{2} \tau}{2 M_{\boldsymbol{k}}}\right)^{i \nu} \Gamma(-i \nu+\frac{1}{2} \underbrace{U_{2}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) U_{2}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right) \gamma^{+}}_{2} \\
& \quad+e^{-\pi \nu / 2}\left(\frac{M_{\boldsymbol{p}}^{2} \tau}{2 M_{\boldsymbol{k}}}\right)^{-i \nu} \Gamma\left(i \nu+\frac{1}{2}\right) \underbrace{U_{1}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) U_{1}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right)}_{1} \gamma^{-}] \\
& \quad \times\left(p^{i} \gamma^{i}+m\right) v_{s}\left(\boldsymbol{k}_{\perp}, y_{k}=0\right)
\end{aligned}
$$

Eikonal approx \rightarrow Color rotation canceled from LC to FS
Pure-gauge \rightarrow Gauge rotation (full) April 27, 2017 @ BNL

Quarks in $A A$

Expectation values $\phi_{p}^{(1)}=e^{-\frac{\pi \nu}{2}\left(\frac{M_{5}^{2} \tau}{2 M_{k}}\right)^{-i \nu} \Gamma\left(i \nu+\frac{1}{2}\right) U_{1}^{\dagger}\left(\boldsymbol{x}_{\perp}\right) \widetilde{U}_{1}\left(\boldsymbol{p}_{\perp}+\boldsymbol{k}_{\perp}\right)}$

$$
\begin{aligned}
& \langle 0| \widehat{\widetilde{\Psi}}(x) M \widehat{\Psi}(x)|0\rangle \\
& =\frac{1}{2(2 \pi)^{2}} \int d \nu \int_{k_{\perp}} \frac{1}{M_{k}} \int_{p_{\perp}} \frac{1}{M_{p}} \int_{q_{\perp}} \frac{1}{M_{q}} e^{-i\left(p_{\perp}-q_{\perp}\right) \cdot x_{\perp}} \\
& \left.\times \operatorname{tr}\left[q^{i} \gamma^{i} \gamma^{i}+m\right)\left(M_{k} \gamma^{0}-k^{j} \gamma^{j}-m\right)\left(p^{i} \gamma^{l}+m\right)\left(\phi_{p}^{(2) \dagger} \gamma^{+}+\phi_{p}^{(1) \dagger} \gamma^{-}\right) M\left(\phi_{q}^{(2)} \gamma^{+}+\phi_{q}^{(1)} \gamma^{-}\right)\right]
\end{aligned}
$$

Easily shown:

Chirality / Longitudinal Current \rightarrow Zero for any $\boldsymbol{U}_{1}, \boldsymbol{U}_{\mathbf{2}}$ Transverse Currents \rightarrow Non-zero for non-trivial U_{1}, U_{2}

Momentum kicks only on the transverse plane

Quarks in AA

> Quarks at $\tau=0^{+}$do not feel any glasma fields at all...

Eikonal approximation is

 insensitive to the longitudinal fieldsEikonal approximation is "exact" in the thin pancake limit and in the $\tau=0^{+}$limit...

Transverse momentum dependent terms (higher twists) contribute to the chirality that grows as $\sim \sqrt{\tau}$

Summary

Photons in $p A$ at high energies
\square LO / NLO-Annihilation / NLO-Bremsstrahlung
\square Numerical calculations partially done: CGC affects LO in IR CGC enhances NLO-Bremsstrahlung (dominant)
\square Full predictions are coming very soon
Quarks in $\boldsymbol{A} \boldsymbol{A}$ at small proper time
\square Particle production not well-defined (unreliable)
\square Chirality production from higher twist effects at finite time (vanishing at zero proper time)
\square Fluctuations (current/chirality) still calculable (B dep?)

