Particle production in pA collisions beyond leading order

Edmond Iancu IPhT Saclay & CNRS

w/ A.H. Mueller and D.N. Triantafyllopoulos, arXiv:1608.05293

BRAHMS $\eta = 2.2, 3.2$

Introduction

- Particle production in pp and pA collisions at forward rapidities explores the physics of high gluon densities at small-x
 - non-linear phenomena: gluon saturation, multiple scattering
 - resummations based on the eikonal approximation (Wilson lines)
 - non-linear evolution equations: BK, B-JIMWLK
- Effective theory derived in pQCD: Color Glass Condensate
- The CGC formalism is now being promoted to NLO
 - NLO versions for the BK and B-JIMWLK equations (Balitsky and Chirilli, 2008, 2013; Kovner, Lublinsky, and Mulian, 2013)
 - NLO impact factor for particle production in *pA* collisions (*Chirilli, Xiao, and Yuan, 2012; Mueller and Munier, 2012*)
- But the strict NLO approximations turned out to be problematic

NLO BK evolution

• "Negative growth" of the dipole scattering amplitude

Lappi, Mäntysaari, arXiv:1502.02400

Not really a surprise

- similar problems for NLO BFKL
- large transverse logarithms
- collinear resummations
- Mellin representation

(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

NLO BK evolution

• "Negative growth" of the dipole scattering amplitude

- Not really a surprise
 - similar problems for NLO BFKL
 - large transverse logarithms
 - collinear resummations
 - Mellin representation

(Salam, Ciafaloni, Colferai, Stasto, 98-03; Altarelli, Ball, Forte, 00-03)

- Collinear improvement for NLO BK (transverse coordinates) (E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)
- Evolution becomes stable with promising phenomenology
 - excellents fits to DIS (lancu et al, 2015; Albacete, 2015)

Saturation @ RBRC, 2017

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_\perp $\ensuremath{\mathfrak{S}}$... but negative at larger p_\perp $\ensuremath{\mathfrak{S}}$

BRAHMS $\eta = 2.2, 3.2$

Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- Is this a real problem ?
 - "small-x resummations do not apply at large p_{\perp} "
 - but $p_{\perp} \sim Q_s$ is not that large !
- Likely related to the rapidity subtraction in NLO impact factor

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_\perp $\ensuremath{\mathfrak{O}}$... but negative at larger p_\perp $\ensuremath{\mathfrak{O}}$

BRAHMS $\eta = 2.2, 3.2$

Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- Is this a real problem ?
 - "small-x resummations do not apply at large p_{\perp} "
 - but $p_\perp \sim Q_s$ is not that large !
- Likely related to the rapidity subtraction in NLO impact factor

- Various proposals which alleviate the problem (pushed to higher p_{\perp})
 - Kang, Vitev, and Xing, arXiv:1403.5221
 - Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869
 - Ducloué, Lappi, and Zhu, arXiv:1604.00225

Saturation @ RBRC, 2017

Particle production in d+Au collisions (RHIC)

ullet Very good agreement at low p_\perp $\ensuremath{\mathfrak{O}}$... but negative at larger p_\perp $\ensuremath{\mathfrak{O}}$

BRAHMS $\eta = 2.2, 3.2$

• Is this a real problem ?

- "small-x resummations do not apply at large p_{\perp} "
- but $p_{\perp} \sim Q_s$ is not that large !
- Likely related to the rapidity subtraction in NLO impact factor

Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

- A reorganization of the perturbative expansion which avoids the rapidity subtraction (E.I., A. Mueller and D. Triantafyllopoulos, 2016)
- Sensible numerical results (positive cross-section)... and a new puzzle (Ducloué, Lappi, and Zhu, arXiv:1703.04962)

Saturation @ RBRC, 2017

Forward quark production in pA collisions

• A quark initially collinear with the proton acquires a transverse momentum p_{\perp} via multiple scattering off the saturated gluons

 $x_p \equiv \frac{p^+}{q^+} = \frac{p_\perp}{\sqrt{s}} e^\eta$ $X_g \equiv \frac{p^-}{P^-} = \frac{p_\perp}{\sqrt{s}} e^{-\eta}$

 $X_g \ll x_p$ when $\eta > 0$

- η : quark rapidity in the COM frame
- x_p : longitudinal fraction of the quark in the proton
- X_g : longitudinal fraction of the gluon in the target

• Gluons in the nucleus have a typical transverse momentum $k_\perp \sim Q_s(X_g)$

Multiple scattering

• Eikonal approximation \implies the transverse coordinate representation

• A_a^- : color field representing small-x gluons in the nucleus

Multiple scattering

• Average over the color fields A^- in the target (CGC)

• Two Wilson lines at different transverse coordinates, traced over color

Saturation @ RBRC, 2017

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

• The Fourier transform $\mathcal{S}(\mathbf{k}, X_g)$: "unintegrated gluon distribution"

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

• 'Hybrid factorization': collinear fact. for *p* & CGC fact. for *A* (Dumitru, Hayashigaki, and Jalilian-Marian, arXiv:hep-ph/0506308).

Saturation @ RBRC, 2017

Particle production in pA at NLO

Edmond Iancu 8 / 30

Dipole picture

• Equivalently: the elastic S-matrix for a $q\bar{q}$ color dipole

• The dipole picture is preserved by the high-energy evolution up to NLO (Kovchegov and Tuchin, 2002; Mueller and Munier, 2012)

Saturation @ RBRC, 2017

BK equation (leading order)

• Probability $\sim \alpha_s \ln \frac{1}{x}$ to radiate a soft gluon with $x \equiv \frac{p^+}{k^+} \ll 1$

- When $\alpha_s \ln \frac{1}{x} \sim 1$: resummation to all orders (part of LO)
- Evolution equation for the dipole S-matrix $S_{xy}(Y)$ with $Y \equiv \ln(1/x)$

$$\frac{\partial S_{\boldsymbol{x}\boldsymbol{y}}}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int d^2 \boldsymbol{z} \, \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

- ullet dipole kernel: probability for the dipole to emit a soft gluon at z
- $\bullet\,$ large- N_c approximation to the Balitsky-JIMWLK hierarchy
- saturation momentum $Q_s(Y)$: S(r,Y) = 0.5 when $r = 1/Q_s(Y)$

Adding running coupling: rcBK

- The evolution speed: saturation exponent $\lambda_s \equiv d \ln Q_s^2/dY$
- At LO, $\lambda_s \sim 1$ is way too large: $\lambda_{_{
 m HERA}} = 0.2 \div 0.3$

Including running coupling dramatically slows down the evolution

• ... but there are other, equally important, NLO corrections !

Saturation @ RBRC, 2017

Particle production beyond leading order

• LO approximation: any number $n \ge 0$ of soft emissions $\implies (\alpha_s Y)^n$

• NLO corrections to the evolution: 2 soft gluons, with similar values of x

• NLO correction to impact factor: the first gluon can be hard

Towards NLO factorization in pA

- The first gluon contributes both to the evolution (when $x \ll 1$) and to the NLO impact factor (generic x) : How to avoid over counting ?
- k⊥-factorization : use a 'rapidity subtraction'

- the method used by Chirilli, Xiao, and Yuan (arXiv:1203.6139)
- leads to a negative cross-section at semi-hard k_\perp
- Our proposal (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)
 - separate the first gluon emission from the evolution and compute it with the exact kinematics
- The integral representation of the BK equation is useful in that sense

LO BK evolution in integral form

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\Big|_{\rm LO} = x_{p}q(x_{p})\,\mathcal{S}(\boldsymbol{k},X_{g})\,,\qquad \mathcal{S}(\boldsymbol{k},X_{g}) = \int\mathrm{d}^{2}\boldsymbol{r}\,\mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}S(\boldsymbol{r},X_{g})$$

• $S(\boldsymbol{r}, X_g)$ is the solution to the LO BK equation and can be written as

$$S_{\boldsymbol{x}\boldsymbol{y}}(X_g) = S_{\boldsymbol{x}\boldsymbol{y}}(X_0) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2 (\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right] (X(x))$$

• Except for the first gluon, the evolution is associated with the nucleus

LO BK evolution in integral form

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\Big|_{\mathrm{LO}} = x_{p}q(x_{p})\,\mathcal{S}(\boldsymbol{k},X_{g})\,,\qquad \mathcal{S}(\boldsymbol{k},X_{g}) = \int\mathrm{d}^{2}\boldsymbol{r}\,\mathrm{e}^{-\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}}S(\boldsymbol{r},X_{g})$$

• $S(\boldsymbol{r}, X_g)$ is the solution to the LO BK equation and can be written as

$$S_{\boldsymbol{x}\boldsymbol{y}}(X_g) = S_{\boldsymbol{x}\boldsymbol{y}}(X_0) + \bar{\alpha}_s \int_{X_g}^1 \frac{\mathrm{d}x}{x} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2 (\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right] (X(x))$$

In more compact, but formal, notations

$$\mathcal{S}(\boldsymbol{k}, X_g) \,=\, \mathcal{S}_0(\boldsymbol{k}) + ar{lpha}_s \int_{X_g}^1 rac{\mathrm{d}x}{x} \, \mathcal{K}(\boldsymbol{k}; 0) \, \mathcal{S}ig(\boldsymbol{k}, X(x)ig) \,; \quad X(x) \equiv rac{X_g}{x}$$

 \mathcal{S} (solution to $\mathcal{LO} \mathcal{BK}$ equation)

Saturation @ RBRC, 2017

Adding the NLO impact factor

• Compute (only) the first gluon emission with the exact kinematics

- K(k; x): kernel for emitting a gluon with exact kinematics (x ≤ 1) (Chirilli, Xiao, and Yuan, arXiv:1203.6139)
- This cross-section is (almost) manifestly positive definite
- LO evolution + NLO impact factor are mixed with each other
- To recover the LO result: $\mathcal{K}(\mathbf{k}; x) \to \mathcal{K}(\mathbf{k}; 0)$ (eikonal limit)

Recovering k_{\perp} -factorization

• Add and subtract the LO result:

 \mathcal{S} (solution to \mathcal{BK} equation)

NLO correction to impact factor

$$rac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\,=\,\mathcal{S}(\boldsymbol{k},X_{g})+ar{lpha}_{s}\int_{X_{g}}^{1}rac{\mathrm{d}x}{x}\left[\mathcal{K}(x)-\mathcal{K}(0)
ight]\mathcal{S}ig(\boldsymbol{k},X(x)ig)$$

• To NLO accuracy, one can perform additional approximations:

• replace $\mathcal{S}(X(x)) \simeq \mathcal{S}(X_g)$ (since integral dominated by $x \sim 1$)

• ... and set $X_g \to 0$ in the lower limit ('plus prescription')

 Local in rapidity : k_⊥-factorization in the form presented by CXY (Chirilli, Xiao, and Yuan, arXiv:1203.6139)

Saturation @ RBRC, 2017

Recovering k_{\perp} -factorization

• Add and subtract the LO result:

 \mathcal{S} (solution to \mathcal{BK} equation)

NLO correction to impact factor

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} \,=\, \boldsymbol{\mathcal{S}}(\boldsymbol{k},X_{g}) + \bar{\alpha}_{s} \int_{0}^{1} \frac{\mathrm{d}x}{x} \left[\boldsymbol{\mathcal{K}}(x) - \boldsymbol{\mathcal{K}}(0) \right] \boldsymbol{\mathcal{S}}\left(\boldsymbol{k},X_{g}\right)$$

• To NLO accuracy, one can perform additional approximations:

• replace $\mathcal{S}(X(x)) \simeq \mathcal{S}(X_g)$ (since integral dominated by $x \sim 1$)

• ... and set $X_g \to 0$ in the lower limit ('plus prescription')

 Local in rapidity : k_⊥-factorization in the form presented by CXY (Chirilli, Xiao, and Yuan, arXiv:1203.6139)

Saturation @ RBRC, 2017

Numerical results: Fixed coupling

(Ducloué, Lappi, and Zhu, arXiv:1703.04962)

• Large NLO correction: $\gtrsim 50 \,\%$ for $k_{\perp} \geq 5$ GeV

- The same results with and without subtraction (of the LO result)
- "A mathematical identity" ... sure, but tricky in practice !
 - one adds and subtracts a large, LO, contribution
 - small oscillations in "subtracted" due to numerical errors
- Strict k_{\perp} -factorization rapidly becomes negative : over-subtraction Saturation @ RBRC, 2017 Particle production in pA at NLO Edmond lance

Numerical results: Running coupling

(Ducloué, Lappi, and Zhu, arXiv:1703.04962)

- The running of the coupling renders the problem even more subtle:
 - already the "subtracted" result becomes negative
 - the "CXY" curve becomes negative even faster
- Mismatch between the running coupling prescriptions used ...
 - in coordinate space (for solving the BK equation)
 - ... and in momentum space (for computing the NLO impact factor)

Adding a running coupling

- The NLO impact factor is generally computed in momentum space
 - natural to use a running coupling $ar{lpha}_s(k_\perp^2)$ (at least for $k_\perp^2\gtrsim Q_s^2)$

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}} = \mathcal{S}_{0}(\boldsymbol{k}) + \bar{\boldsymbol{\alpha}}_{\boldsymbol{s}}(\boldsymbol{k}_{\perp}^{2}) \int_{X_{g}}^{1} \frac{\mathrm{d}x}{x} \mathcal{K}(\boldsymbol{k};x) \mathcal{S}(\boldsymbol{k},X(x))$$

- more generally: $\bar{lpha}_s(k_{
 m max}^2)$
- Dipole S-matrix is computed by solving rcBK in coordinate space

$$S_{\boldsymbol{x}\boldsymbol{y}}(X_g) = S_{\boldsymbol{x}\boldsymbol{y}}(X_0) + \int_{X_g}^1 \frac{\mathrm{d}x}{x} \int_{\boldsymbol{z}} \bar{\boldsymbol{\alpha}}_{\boldsymbol{s}}(\boldsymbol{r}_{\min}^2) \frac{(\boldsymbol{x}-\boldsymbol{y})^2}{(\boldsymbol{x}-\boldsymbol{z})^2(\boldsymbol{y}-\boldsymbol{z})^2} \left[S_{\boldsymbol{x}\boldsymbol{z}} S_{\boldsymbol{z}\boldsymbol{y}} - S_{\boldsymbol{x}\boldsymbol{y}} \right]$$

•
$$r_{\min} \equiv \min \{ |x - y|, |x - z|, |y - z| \}$$

• Running coupling and Fourier transform do not "commute" with each other

Towards a new puzzle ?

• The FT transform $\mathcal{S}(\pmb{k},X)$ does not obey the expected integral equation in momentum space

$$\mathcal{S}(\boldsymbol{k}, X_g) \neq \mathcal{S}_0(\boldsymbol{k}) + \bar{\alpha}_s(\boldsymbol{k}_{\perp}^2) \int_{X_g}^1 \frac{\mathrm{d}x}{x} \,\mathcal{K}(\boldsymbol{k}; 0) \,\mathcal{S}(\boldsymbol{k}, X(x))$$

- subtracting the LO result is not an identity anymore
- mismatch between "subtracted" and "unsubtracted" results
- Our prescription (E.I., Mueller, Triantafyllopoulos, arXiv:1608.05293)
 - use the "unsubtracted" result with momentum-space RC $\bar{lpha}_s(k_\perp^2)$
 - reasonable numerical results: positive definite
- But how sensitive are these results upon the choice of a scheme ?
- Alternative scheme: compute the NLO impact factor fully in coordinate space and make the FT at the very end

(Ducloué, Lappi, and Zhu, arXiv:1703.04962)

Numerical results: Coordinate space with RC

(Ducloué, Lappi, and Zhu, arXiv:1703.04962 – see the Appendix)

- ullet "Unsubtracted" and "subtracted" results coincide with each other igodot
 - calculations systematically done in coordinate space
 - subtraction performed in coordinate space before the final FT
- ullet ... but they are larger than the LO result by a factor ~ 100 !
- The mismatch with the "momentum-space scheme" is spectacular, but so far we do not understand its origin

Saturation @ RBRC, 2017

Completing the NLO evolution

(E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

• Recall: the NLO BK evolution also involves 2-loop graphs

(Balitsky and Chirilli, 2008; Iancu et al, 2015)

Saturation @ RBRC, 2017

Conclusions

- The usual k_{\perp} -factorization at high energy (local in rapidity) can provide unphysical results at NLO
 - the strict separation between a 'LO result' and 'NLO corrections' involves a high degree of fine tuning, leading to instabilities in the presence of seemingly innocuous additional approximations
- A more general factorization has been proposed to circumvent this problem
 - no explicit separation between LO and NLO
 - non-local in rapidity
- Sensible physical results: positive cross-section, but smaller than at LO
 - at fixed coupling
 - with running coupling, but using a mixed scheme
- A fully coordinate-space calculation with RC leads to new difficulties
- Next step: attempt a fully momentum-space calculation with RC

Back-up Slides

LO phenomenology (rcBK)

(Albacete, Dumitru, Fujii, Nara, arXiv:1209:2001)

• Fit parameters: initial condition for the rcBK equation + K-factors

$$\frac{\mathrm{d}N}{\mathrm{d}\eta\mathrm{d}^{2}\boldsymbol{k}}\Big|_{\scriptscriptstyle \mathrm{LO}} = \boldsymbol{K}^{\boldsymbol{h}} \int_{x_{p}}^{1} \frac{\mathrm{d}z}{z^{2}} \frac{x_{p}}{z} q\left(\frac{x_{p}}{z}\right) \mathcal{S}\left(\frac{\boldsymbol{k}}{z}, X_{g}\right) D_{h/q}(z)$$

Exact kinematics for target evolution

• 'Real amplitude' : the gluon is produced in the final state

• LC energy conservation:

$$\frac{k_{\perp}^{2}}{2(1-x)q_{0}^{+}} + \frac{p_{\perp}^{2}}{2xq_{0}^{+}} = XP^{-}$$

$$\Rightarrow X = X(x, p_{\perp})$$

$$\Rightarrow \text{ simplifies when } k_{\perp} \simeq p_{\perp} \gg Q_{s}$$

$$X(x) \simeq \frac{k_{\perp}^{2}}{xs} = \frac{X_{g}}{x}$$

$$\Rightarrow X \le 1 \Longrightarrow x \ge X_{g}$$

- Equivalently: gluon lifetime should be larger than the target width
- The same condition holds for the 'virtual' corrections
 - non-trivial cancellations required by probability conservation

Saturation @ RBRC, 2017

Particle production in pA at NLO

(

The negativity problem

(Stasto, Xiao, and Zaslavsky, arXiv:1307.4057)

• Sudden drop in the numerical estimate at momenta p_{\perp} of order Q_s

BRAHMS $\eta = 2.2, 3.2$

"NLO evolution is notoriously unstable"
Sure, but in this calculation S ≈ S_{гсВК}
rcBK evolution is well behaved
the actual "LO approx" in practice

$$\frac{\mathrm{d}N}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{k}}\Big|_{\scriptscriptstyle\mathrm{LO}}=\,\mathcal{S}_{\scriptscriptstyle\mathrm{rcBK}}(\boldsymbol{k},X_g)$$

• The NLO correction to the impact factor is negative (not a real surprise) ... and dominates over the LO result at sufficiently large k_{\perp}

Some proposals to solve the problem

- General idea: the 'subtracted' term performs an ... over-subtraction
- Strategy: reduce the longitudinal (x) phase-space for the 'hard' gluon
 - factorization scale x_0 separating 'evolution' from 'impact factor' (Kang, Vitev, and Xing, arXiv:1403.5221)

$$\int_0^1 \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right] \implies \int_0^{x_0} \frac{\mathrm{d}x}{x} \left[\mathcal{K}(x) - \mathcal{K}(0) \right]$$

- x₀ can depend upon k_⊥, say to account for 'time-ordering' (Ducloué, Lappi, and Zhu, arXiv:1604.00225)
- In principle, it shouldn't matter that much
 - the x_0 -dependence must cancel in a complete calculation
- In practice, it only pushes the problem up to somewhat higher k_\perp
 - ullet also, strongly dependent upon the precise implementation of x_0

Saturation @ RBRC, 2017

Energy conservation ("loffe's time")

(Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869)

 $\bullet \ x$ cannot be arbitrarily small since constrained by energy conservation

• Gluon lifetime should be larger than the target width

$$\frac{2xq_0^+}{p_\perp^2} > \frac{1}{P^-} \Longrightarrow x > \frac{p_\perp^2}{s}$$

Implementing the constraint

(Watanabe, Xiao, Yuan, and Zaslavsky, arXiv:1505:05183)

• It matters for the subtraction scheme only if $k_\perp \gg p_\perp$

ullet Once again, it pushes the problem to higher k_\perp

 $\bullet\,\,\ldots\,\,$ and strongly dependent upon the model/evolution chosen for ${\cal S}$

Why is this a problem ?

- An extreme example: GBW saturation model $\mathcal{S}_{ ext{GBW}}(m{k},X) \propto ext{e}^{-rac{k_{\perp}^2}{Q_s^2}}$
 - ullet the 'added' piece is exponentially suppressed at $k_\perp \gg Q_s$
 - ullet the 'subtracted' piece develops a power-law tail $\propto 1/k_{\perp}^4$
 - the overall result becomes negative at sufficiently large k_\perp

(Ducloué, Lappi, and Zhu, arXiv:1604.00225)